Journal Article PUBDB-2019-03518

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Low-barrier hydrogen bonds in enzyme cooperativity

 ;  ;  ;  ;  ;  ;  ;  ;

2019
Macmillan28177 London

Nature <London> / Physical science 573(7775), 609 - 613 () [10.1038/s41586-019-1581-9]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:

Abstract: The underlying molecular mechanisms of cooperativity and allosteric regulation are well understood for many proteins, with haemoglobin and aspartate transcarbamoylase serving as prototypical examples1,2. The binding of effectors typically causes a structural transition of the protein that is propagated through signalling pathways to remote sites and involves marked changes on the tertiary and sometimes even the quaternary level1,2,3,4,5. However, the origin of these signals and the molecular mechanism of long-range signalling at an atomic level remain unclear5,6,7,8. The different spatial scales and timescales in signalling pathways render experimental observation challenging; in particular, the positions and movement of mobile protons cannot be visualized by current methods of structural analysis. Here we report the experimental observation of fluctuating low-barrier hydrogen bonds as switching elements in cooperativity pathways of multimeric enzymes. We have observed these low-barrier hydrogen bonds in ultra-high-resolution X-ray crystallographic structures of two multimeric enzymes, and have validated their assignment using computational calculations. Catalytic events at the active sites switch between low-barrier hydrogen bonds and ordinary hydrogen bonds in a circuit that consists of acidic side chains and water molecules, transmitting a signal through the collective repositioning of protons by behaving as an atomistic Newton’s cradle. The resulting communication synchronizes catalysis in the oligomer. Our studies provide several lines of evidence and a working model for not only the existence of low-barrier hydrogen bonds in proteins, but also a connection to enzyme cooperativity. This finding suggests new principles of drug and enzyme design, in which sequences of residues can be purposefully included to enable long-range communication and thus the regulation of engineered biomolecules.

Classification:

Note: © Springer Nature Limited; Post referee fulltext in progress; Embargo 12 months from publication

Contributing Institute(s):
  1. EMBL-User (EMBL-User)
Research Program(s):
  1. 6G3 - PETRA III (POF3-622) (POF3-622)
Experiment(s):
  1. PETRA Beamline P13 (PETRA III)
  2. PETRA Beamline P14 (PETRA III)

Appears in the scientific report 2019
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 40 ; JCR ; NCBI Molecular Biology Database ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Private Collections > >EMBL > EMBL-User
Public records
Publications database

 Record created 2019-09-30, last modified 2025-07-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)