Journal Article PHPPUBDB-15659

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Crystal structure control in Au-free self-seeded InSb wire growth

 ;  ;  ;  ;  ;  ;  ; DESY

2011
IOP Publ. Bristol

Nanotechnology 22, 145603 () [10.1088/0957-4484/22/14/145603]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20 at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio at the particle-wire interface. The low ionicity of InSb and the large diameter of the wire structures studied in this work are entirely outside the parameters for which polytype formation is predicted by current models of particle seeded wire growth, suggesting that the V/III ratio at the interface determines crystal structure in a manner well beyond current understanding. These results therefore provide important insight into the relationship between the particle composition and the crystal structure, and demonstrate the potential to selectively tune the crystal structure in other III-V compound materials as well.

Classification:

Contributing Institute(s):
  1. Experiments with synchrotron radiation (HASYLAB)
Research Program(s):
  1. DORIS Beamline D4 (POF2-54G13) (POF2-54G13)
Experiment(s):
  1. DORIS Beamline D4 (DORIS III)

Appears in the scientific report 2011
Notes: (c) Institute of Physics.
Database coverage:
Medline ; OpenAccess ; JCR ; No Author Disambiguation ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FS > HASYLAB(-2012)
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2012-09-19, last modified 2025-07-30


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)