Journal Article PUBDB-2025-04143

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Crystal structure, enzymatic and thermodynamic properties of the Thermus thermophilus phage Tt72 lytic endopeptidase with unique structural signatures of thermal adaptation

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Elsevier San Diego, Calif.

Journal of structural biology 217(3), 108230 - () [10.1016/j.jsb.2025.108230]
 GO

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: We presents the discovery and molecular characterization of a novel lytic enzyme from the extremophilic Thermus thermophilus MAT72 phage vB_Tt72. The protein of 346-aa (MW = 39,705) functions as phage vB_Tt72 endolysin and shows low sequence identity (<37 %) to members of M23 family of peptidoglycan hydrolases, except for two uncharacterized endopeptidases of T. thermophilus phages: φYS40 (87 %) and φTMA (88 %). The enzyme exhibits lytic activity mainly against bacteria of the genus Thermus and, to a lesser extent, against other Gram-negative and Gram-positive bacteria. The protein is monomeric in solution and is highly thermostable (Tm = 98.3 °C). It retains ∼ 50 % of its lytic activity after 90 min of incubation at 99 °C. Crystallographic analysis, at 2.2 Å resolution, revealed a fold characteristic of M23 metallopeptidases, accounting for 40 % of the structure. The remaining parts of the molecule are folded in a manner that was previously undescribed. The M23 fold contains a Zn2+ ion coordinated by a conserved His-Asp-His triad, and two conserved His residues essential for catalysis. The active site is occupied by a phosphate or a sulfate anion, while the substrate-binding groove contains a ligand, which is a fragment of E. coli peptidoglycan. The common sequence-based criteria failed to identify the protein as (hyper)thermophilic. It is likely that the protein’s thermal stability is owed to peculiar features of its three-dimensional structure. Instead of trimmed surface loops, observed in many thermostable proteins, the catalytic domain contains two long loops that interlace and form an α-helical bundle with its own hydrophobic core.

Classification:

Contributing Institute(s):
  1. EMBL-User (EMBL-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
Experiment(s):
  1. PETRA Beamline P13 (PETRA III)

Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Private Collections > >EMBL > EMBL-User
Documents in process
Public records

 Record created 2025-09-30, last modified 2025-09-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)