Journal Article PUBDB-2025-02332

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Real-time probing of the interplay between spinodal decomposition and crystallization during morphological evolution in printed organic solar cells

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Elsevier Amsterdam [u.a.]

Nano energy 143, 111301 () [10.1016/j.nanoen.2025.111301]
 GO

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: The performance of organic solar cells (OSCs) strongly depends on the phase separation and crystalline properties within the active layer. However, the lack of deep understanding of morphological evolution, particularly regarding spinodal decomposition and crystallization mechanisms, presents substantial challenges in achieving precise morphological control. In this work, we systematically investigate the film formation of PBDB-TF-TTz: BTP-4F-24 blends during slot-die coating while comparing o-xylene and chlorobenzene (CB) as solvents to create distinct polymer/solvent/non-solvent systems. The complex interplay between the spinodal decomposition and crystallization processes is elucidated through complementary in situ grazing incidence small-angle X-ray scattering (GISAXS) and in situ grazing incidence wide-angle X-ray scattering (GIWAXS) together with the calculation of spinodal curves. Our findings indicate that CB-processed active layers generate larger initial clusters, promoting domain coarsening while suppressing crystallization. In contrast, o-xylene-processed films exhibit optimized phase separation, larger crystallites, and face-on molecular orientations, enhancing charge transport. Additionally, polymer-dominated thermodynamic and kinetic evolution plays a critical role in shaping out the final morphology. Consequently, OSCs fabricated with o-xylene achieve higher power conversion efficiency than those processed with CB. These insights enrich the understanding of morphological evolution and provide valuable guidelines for morphology optimization.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. PETRA-D (FS-PETRA-D)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  3. DFG project G:(GEPRIS)390776260 - EXC 2089: e-conversion (390776260) (390776260)
Experiment(s):
  1. PETRA Beamline P03 (PETRA III)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Private Collections > >DESY > >FS > FS-PETRA-D
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2025-07-10, last modified 2025-07-27


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)