Journal Article PUBDB-2025-01942

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Decoding in-plane orientation in cellulose nanopapers hybridized with tailored polymeric nanoparticles

 ;  ;  ;  ;  ;  ;  ;  ;

2025
RSC Publ. Cambridge

Nanoscale 17(14), 8712 - 8723 () [10.1039/D4NR04381B]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Biobased cellulose nanofibrils (CNFs) constitute important building blocks for biomimetic, nanostructured materials, and considerable potential exists in their hybridization with tailorable polymeric nanoparticles. CNFs naturally assemble into oriented, fibrillar structures in their cross-section. This work shows that polymeric nanoparticle additives have the potential to increase or decrease orientation of these cellulose structures, which allows the control of bulk mechanical properties. Small amounts of these additives (<1 wt%) are shown to promote the alignment of CNFs, and the particle size is found to determine a tailorable maximum feature size which can be modified. Herein, X-ray scattering allows for the quantification of orientation at different length scales. This newly developed method of measuring cross-sectional orientation allows for understanding the influence of nanoparticle characteristics on the CNF network structure at different length scales in hybrid cellulose-nanoparticle materials, where previously quantitative description has been lacking. It thus constitutes an important foundation for further development and understanding of nanocellulose materials on the level of their nanoscale building blocks and their interactions, which in turn are decisive for their macroscopic properties.

Classification:

Note: I-11014778

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. PETRA-D (FS-PETRA-D)
  3. Sustainable Materials (FS-SMA)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  3. SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY) (2020_Join2-SWEDEN-DESY)
Experiment(s):
  1. PETRA Beamline P03 (PETRA III)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Private Collections > >DESY > >FS > FS-PETRA-D
Private Collections > >DESY > >FS > FS-SMA
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2025-06-23, last modified 2025-07-15


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)