Journal Article PUBDB-2024-07350

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A Multiwavelength Study to Decipher the 2017 Flare of the Blazar OJ 287

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2024
Institute of Physics Publ. London

The astrophysical journal / Part 1 973(2), 134 () [10.3847/1538-4357/ad64d0]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Report No.: arXiv:2407.11848

Abstract: In 2017 February, the blazar OJ 287 underwent a period of intense multiwavelength activity. It reached a new historic peak in the soft X-ray (0.3–10 keV) band, as measured by the Swift X-ray Telescope. This event coincides with a very-high-energy (VHE) γ-ray outburst that led VERITAS to detect emission above 100 GeV, with a detection significance of 10σ (from 2016 December 9 to 2017 March 31). The time-averaged VHE γ-ray spectrum was consistent with a soft power law (Γ = −3.81 ± 0.26) and an integral flux corresponding to ∼2.4% that of the Crab Nebula above the same energy. Contemporaneous data from multiple instruments across the electromagnetic spectrum reveal a complex flaring behavior, primarily in the soft X-ray and VHE bands. To investigate the possible origin of such an event, our study focuses on three distinct activity states: before, during, and after the 2017 February peak. The spectral energy distributions during these periods suggest the presence of at least two nonthermal emission zones, with the more compact one responsible for the observed flare. Broadband modeling results and observations of a new radio knot in the jet of OJ 287 in 2017 are consistent with a flare originating from a strong recollimation shock outside the radio core.

Classification:

Note: 21 pages, 7 figures, accepted for publication in The Astrophysical Journal

Contributing Institute(s):
  1. Cherenkov Telescope Array (Z_CTA)
Research Program(s):
  1. 613 - Matter and Radiation from the Universe (POF4-613) (POF4-613)
Experiment(s):
  1. Very Energetic Radiation Imaging Telescope Array System

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >ZEUTHEN > Z_CTA
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ; et al
A Multiwavelength Study to Decipher the 2017 Flare of the Blazar OJ 287
[10.3204/PUBDB-2025-00097]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2024-12-05, last modified 2025-07-23


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)