Journal Article PUBDB-2024-06975

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Transport of dust across the Solar System: Constraints on the spatial origin of individual micrometeorites from cosmic-ray exposure

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2024
Royal Soc. London

Philosophical transactions of the Royal Society of London / Series A 382(2273), 20230197 () [10.1098/rsta.2023.0197]  GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: The origin of micrometeorites (MMs) from asteroids and comets is well-established, but the relative contribution from these two classes remains poorly resolved. Likewise, determining the precise origin of individual MMs is an open challenge. Here, cosmic-ray exposure ages are used to resolve the spatial origins of 12 MMs collected from urban areas and Antarctica. Their 26Al and 10Be concentration, produced during cosmic-ray irradiation in space, were measured by accelerator mass spectrometry. These data are compared to results from a model simulating the transport and irradiation of the MM precursors in space. This model, for the first time, considers a variety of orbits, precursor particle sizes, compositions and densities and incorporates non-isotropic solar and galactic cosmic-ray flux profiles, depth-dependent production rates, as well as spherical evaporation during atmospheric entry. While the origin for six MMs remains ambiguous, two MMs show a preferential tendency towards an origin in the Inner Solar System (Near Earth Objects to the Asteroid Belt) and four towards an origin in the Outer Solar System (Jupiter Family Comets to the Kuiper Belt). These findings challenge the notion that dust originating from the Outer Solar System is unlikely to survive long-term transport and delivery to the terrestrial planets.

Classification:

Note: ISSN 1471-2962 not unique: **2 hits**.

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. PETRA-S (FS-PETRA-S)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
Experiment(s):
  1. PETRA Beamline P06 (PETRA III)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; National-Konsortium ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Private Collections > >DESY > >FS > FS-PETRA-S
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2024-11-21, last modified 2025-07-15


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)