Journal Article PUBDB-2024-06121

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The Delayed Box: Biphenyl Bisimide Cyclophane, a Supramolecular Nano-environment for the Efficient Generation of Delayed Fluorescence

 ;  ;  ;  ;

2024
ACS Publications Washington, DC

Journal of the American Chemical Society 146(31), 22056-22063 () [10.1021/jacs.4c07730]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Activating delayed fluorescence emission in a dilute solution via a non-covalent approach is a formidable challenge. In this report, we propose a strategy for efficient delayed fluorescence generation in dilute solution using a non-covalent approach via supramolecularly engineered cyclophane-based nanoenvironments that provide sufficient binding strength to π-conjugated guests and that can stabilize triplet excitons by reducing vibrational dissipation and lowering the singlet–triplet energy gap for efficient delayed fluorescence emission. Toward this goal, a novel biphenyl bisimide-derived cyclophane is introduced as an electron-deficient and efficient triplet-generating host. Upon encapsulation of various carbazole-derived guests inside the nanocavity of this cyclophane, emissive charge transfer (CT) states close to the triplet energy level of the biphenyl bisimide are generated. The experimental results of host–guest studies manifest high association constants up to 10$^4$ M$^{–1}$ as the prerequisite for inclusion complex formation, the generation of emissive CT states, and triplet-state stabilization in a diluted solution state. By means of different carbazole guest molecules, we could realize tunable delayed fluorescence emission in this carbazole-encapsulated biphenyl bisimide cyclophane in methylcyclohexane/carbon tetrachloride solutions with a quantum yield (QY) of up to 15.6%. Crystal structure analyses and solid-state photophysical studies validate the conclusions from our solution studies and provide insights into the delayed fluorescence emission mechanism.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. FS-Proposal: I-20230262 (I-20230262) (I-20230262)
Experiment(s):
  1. PETRA Beamline P11 (PETRA III)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Chemical Reactions ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 15 ; Index Chemicus ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2024-10-02, last modified 2025-07-23


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)