Journal Article PUBDB-2024-00470

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Near‐Infrared Organic Photodetectors toward Skin‐Integrated Photoplethysmography‐Electrocardiography Multimodal Sensing System

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
Wiley-VCH Weinheim

Advanced science 10(36), 2304174 () [10.1002/advs.202304174]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: In the fast-evolving landscape of decentralized and personalized healthcare, the need for multimodal biosensing systems that integrate seamlessly with the human body is growing rapidly. This presents a significant challenge in devising ultraflexible configurations that can accommodate multiple sensors and designing high-performance sensing components that remain stable over long periods. To overcome these challenges, ultraflexible organic photodetectors (OPDs) that exhibit exceptional performance under near-infrared illumination while maintaining long-term stability are developed. These ultraflexible OPDs demonstrate a photoresponsivity of 0.53 A W$^{−1}$ under 940 nm, shot-noise-limited specific detectivity of 3.4 × 10$^{13}$ Jones, and cut-off response frequency beyond 1 MHz at −3 dB. As a result, the flexible photoplethysmography sensor boasts a high signal-to-noise ratio and stable peak-to-peak amplitude under hypoxic and hypoperfusion conditions, outperforming commercial finger pulse oximeters. This ensures precise extraction of blood oxygen saturation in dynamic working conditions. Ultraflexible OPDs are further integrated with conductive polymer electrodes on an ultrathin hydrogel substrate, allowing for direct interface with soft and dynamic skin. This skin-integrated sensing platform provides accurate measurement of photoelectric and biopotential signals in a time-synchronized manner, reproducing the functionality of conventional technologies without their inherent limitations.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. DFG project 390776260 - EXC 2089: e-conversion (390776260) (390776260)
Experiment(s):
  1. PETRA Beamline P03 (PETRA III)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 15 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2024-01-26, last modified 2025-09-29


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)