Journal Article PUBDB-2023-04603

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The development of ultrafine grain structure in an additively manufactured titanium alloy via high-temperature microscopy

 ;  ;  ;

2023
Elsevier Amsterdam

Materialia 30, 101856 - () [10.1016/j.mtla.2023.101856]
 GO

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Report No.: I-20210694

Abstract: Microstructures dominated by acicular α' martensitic phase, such as in the case of Ti-6Al-4V fabricated by laser powder-bed fusion (PBF-LB), are known to suffer from reduced ductility and low toughness. The decomposition of such metastable microstructures into α+β lamellar structures during PBF-LB requires either specific laser regimes that are often challenging to be attained or post-process heat treatments which might lead, instead, to undesirable coarsening of the grain structure. Here we propose a novel route for the formation of ultrafine lamellar α+β microstructures and demonstrate the associated advantages in terms of tensile strength and ductility. Our approach is based on a suitable modification of constitution of Ti-6Al-4V with additions of Fe, a known potent β stabiliser of high intrinsic diffusivity. After printing, this alloy presents a microstructure dominated by metastable β phase. We investigate the details of its decomposition using a combination of in-situ high-energy synchrotron X-ray diffraction and high temperature microscopy up to the β transus temperature. The microstructure evolution is comprised by homogeneous decomposition of the metastable β phase via ω-assisted nucleation of α phase, α grain growth sustained by early diffusion of Fe in the β phase followed by a conventional partitioning of V. The understanding of this transformation pathway enables the development of ultrafine grained α+β lamellar microstructures that exhibit outstanding tensile behaviour. The presented approach is machine-agnostic and offers a novel alloy design strategy for development of high-strength alloys in additive manufacturing.


Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. FS-Proposal: I-20210694 (I-20210694) (I-20210694)
Experiment(s):
  1. PETRA Beamline P07 (PETRA III)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Emerging Sources Citation Index ; IF < 5 ; JCR ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2023-07-31, last modified 2025-07-24


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)