Journal Article PUBDB-2023-03250

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Microstructure and Mechanical Properties of an Advanced Ag-Microalloyed Aluminum Crossover Alloy Tailored for Wire-Arc Directed Energy Deposition

 ;  ;  ;

2023
TMS

JOM 75(10), 4128 - 4137 () [10.1007/s11837-023-05838-y]
 GO

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: The implementation of wire-arc directed energy deposition requires the development of novel, process-adapted, high-performance aluminum alloys. Conventional high-strength alloys are, however, difficult to process as they are prone to hot-cracking. Crossover alloys based on Al-Mg-Zn combine good processability with good mechanical properties following artificial aging. Here, we present an effort to further improve the mechanical properties of Al-Mg-Zn crossover alloys using Ag microalloying. No cracks and few porosities were observed in the samples. The microstructure is dominated by fine and globular grains with a grain size ≈ 26.6 µm. The grain structure is essentially free of texture and contains fine microsegregation zones with ≈ 3–5 µm thickness of segregation seams. Upon heat treatment these microsegregation zones are dissolved and T-phase precipitates are formed as clarified by diffraction experiments. This precipitation reaction results in a microhardness of ≈ 155 HV0.1, a yield strength of 391.3 MPa and 418.6 MPa, an ultimate tensile strength of 452.7 MPa and 529.4 MPa and a fracture strain of 3.4% and 4.4% in transversal and in longitudinal directions, respectively. The gained results suggest that highly loaded structures can be manufactured by wire-arc directed energy deposition using the newly developed aluminum crossover alloy.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. FS-Proposal: I-20210694 (I-20210694) (I-20210694)
Experiment(s):
  1. PETRA Beamline P07 (PETRA III)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DEAL Springer ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2023-05-16, last modified 2025-07-24


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
(additional files)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)