Journal Article PUBDB-2022-07430

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Fatigue crack propagation behavior of a micro-bainitic TRIP steel

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Elsevier Amsterdam

Materials science and engineering / A 840, 142898 () [10.1016/j.msea.2022.142898]
 GO

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Controlling the grain size of steels is an effective way for tailoring their mechanical properties, such as yield strength, impact toughness, and ductility. In this study, a new industrial thermomechanical treatment was applied to a low-alloyed TRIP-assisted bainitic steel 13MnSiCr7 to achieve a substantial microstructural refinement. In this way the average grain size of the new micro-bainitic steel was decreased from ∼25 μm to ∼5 $μ$m. Fatigue tests were carried out in order to investigate the influence of this new thermomechanical treatment on crack propagation behavior. Besides electron backscatter diffraction (EBSD), vibrating sample magnetometry (VSM), and high-energy synchrotron X-ray diffraction (HEXRD) were used to study the microstructure in the vicinity of the fatigue crack tip. The applicability of each method for detecting the martensitic transformation is discussed. In addition, the contribution of the martensitic transformation to fracture toughness was assessed on the basis of the results obtained by HEXRD.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
  2. FS-Proposal: I-20210694 (I-20210694) (I-20210694)
Experiment(s):
  1. PETRA Beamline P07 (PETRA III)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2022-12-08, last modified 2025-07-24


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)