Journal Article PUBDB-2022-04911

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Gadolinium and Bio-Metal Association: A Concentration Dependency Tested in a Renal Allograft and Investigated by Micro-Synchrotron XRF

 ;  ;

2022
MDPI Basel

Journal of imaging 8(10), 254 () [10.3390/jimaging8100254]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Aims: This study aimed to investigate gadolinium (Gd) and bio-metals in a renal allograft of a patient who was shortly after transplantation repeatedly exposed to a Gd-based contrast agent (GBCA), with the purpose of determining whether Gd can be proven and spatially and quantitatively imaged. Further elemental associations between Gd and bio-metals were also investigated. Materials and Methods: Archival paraffin-embedded kidney tissue (eight weeks after transplantation) was investigated by microscopic synchrotron X-ray fluorescence (µSRXRF) at the DORIS III storage ring, beamline L, at HASYLAB/DESY (Hamburg, Germany). For the quantification of elements, X-ray spectra were peak-fitted, and the net peak intensities were normalized to the intensity of the incoming monochromatic beam intensity. Concentrations were calculated by fundamental parameter-based program quant and external standardization. Results: Analysis of about 15,000 µSRXRF spectra (comprising allograft tissue of four cm$^2$) Gd distribution could be quantitatively demonstrated in a near histological resolution. Mean Gd resulted in 24 ± 55 ppm with a maximum of 2363 ppm. The standard deviation of ±55 ppm characterized the huge differences in Gd and not in detection accuracy. Gd was heterogeneously but not randomly distributed and was mostly found in areas with interstitial fibrosis and tubular atrophy. Concentrations of all other investigated elements in the allograft resembled those found in normal kidney tissue. No correlations between Gd and bio-metals such as calcium, strontium or zinc below ~40 ppm Gd existed. In areas with extremely high Gd, Gd was associated with iron and zinc. Conclusions: We could show that no dose-dependent association between Gd and bio-metals exists—least in renal tissue—at Gd concentrations below ~40 ppm Gd. This was proven compared with a GBCA-exposed end-stage renal failure in which the mean Gd was ten-fold higher. Our results could shed additional light on Gd metabolism.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. PETRA-S (FS-PETRA-S)
Research Program(s):
  1. 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) (POF4-633)
Experiment(s):
  1. DORIS Beamline L (DORIS III)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Fees ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Private Collections > >DESY > >FS > FS-PETRA-S
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess

 Record created 2022-09-23, last modified 2025-07-15


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)