| Home > Publications database > Quantitative comparison of the magnetic proximity effect in Pt detected by XRMR and XMCD |
| Journal Article | PUBDB-2021-00182 |
; ; ; ; ; ; ; ; ; ;
2021
American Inst. of Physics
Melville, NY
This record in other databases:
Please use a persistent id in citations: doi:10.1063/5.0032584 doi:10.3204/PUBDB-2021-00182
Abstract: X-ray resonant magnetic reflectivity (XRMR) allows for the simultaneous measurement of structural, optical, and magneto-optic properties and depth profiles of a variety of thin film samples. However, a same-beamtime same-sample systematic quantitative comparison of the magnetic properties observed using XRMR and x-ray magnetic circular dichroism (XMCD) is still pending. Here, the XRMR results (Pt L3 absorption edge) for the magnetic proximity effect in Pt deposited on the two different ferromagnetic materials Fe and Co33Fe67 are compared with quantitatively analyzed XMCD results. The obtained results are in very good quantitative agreement between the absorption-based (XMCD) and reflectivity-based (XRMR) techniques, taking into account an ab initio calculated magneto-optic conversion factor for the XRMR analysis. Thus, it is shown that XRMR provides quantitative reliable spin depth profiles important for spintronic and spin caloritronic transport phenomena at this type of magnetic interfaces.
|
The record appears in these collections: |
Journal Article
Erratum: “Quantitative comparison of the magnetic proximity effect in Pt detected by XRMR and XMCD” [Appl. Phys. Lett. 118 , 012407 (2021)]
Applied physics letters 118(8), 089901 (2021) [10.1063/5.0045052]
Files
BibTeX |
EndNote:
XML,
Text |
RIS