Journal Article PUBDB-2017-00561

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Dark matter and observable lepton flavor violation

 ;

2016
Inst. Woodbury, NY

Physical review / D 94(12), 125022 () [10.1103/PhysRevD.94.125022]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Report No.: DESY-16-127; ULB-TH-16-11; arXiv:1607.01798

Abstract: Seesaw models with leptonic symmetries allow right-handed (RH) neutrino masses at the electroweak scale, or even lower, at the same time having large Yukawa couplings with the Standard Model leptons, thus yielding observable effects at current or near-future lepton-flavor-violation (LFV) experiments. These models have been previously considered also in connection to low-scale leptogenesis, but the combination of observable LFV and successful leptogenesis has appeared to be difficult to achieve unless the leptonic symmetry is embedded into a larger one. In this paper, instead, we follow a different route and consider a possible connection between large LFV rates and dark matter (DM). We present a model in which the same leptonic symmetry responsible for the large Yukawa couplings guarantees the stability of the DM candidate, identified as the lightest of the RH neutrinos. The spontaneous breaking of this symmetry, caused by a Majoron-like field, also provides a mechanism to produce the observed relic density via the decays of the latter. The phenomenological implications of the model are discussed, finding that large LFV rates, observable in the near-future μ→e conversion experiments, require the DM mass to be in the keV range. Moreover, the active-neutrino coupling to the Majoron-like scalar field could be probed in future detections of supernova neutrino bursts.

Classification:

Contributing Institute(s):
  1. Theorie-Gruppe (T)
Research Program(s):
  1. 611 - Fundamental Particles and Forces (POF3-611) (POF3-611)
  2. VH-GS-500 - PIER Helmholtz Graduate School (2015_IFV-VH-GS-500) (2015_IFV-VH-GS-500)
Experiment(s):
  1. No specific instrument

Appears in the scientific report 2016
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >FH > T
Document types > Articles > Journal Article
Public records
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint/Report  ;
Dark matter and observable Lepton Flavour Violation
 GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2017-01-13, last modified 2025-07-17


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)