Home > Publications database > Four-loop splitting functions in QCD – The quark-quark case |
Preprint | PUBDB-2024-06698 |
; ; ;
2023
This record in other databases:
Please use a persistent id in citations: doi:10.3204/PUBDB-2024-06698
Report No.: DESY-23-022; LTH 1333; arXiv:2302.07593
Abstract: We present the even-$N$ moments $N\leq 20$ of the quark pure-singlet splitting function $P_{\rm ps}^{}$ at four loops in perturbative QCD.We have computed the anomalous dimensions of off-shell flavor-singlet operatormatrix elements analytically for a general gauge group.We provide approximations for $P_{\rm ps}^{}$ at four loops that are sufficient for all collider-physics applications.Together with the known results for the non-singlet splitting function $P_{\rm ns}^{\,+}$ at this order, this completes the quark-quark case, $P_{\rm qq} = P_{\rm ns}^{\,+} + P_{\rm ps}^{}$, entering the evolution of parton distribution at N$^3$LO accuracy. The new result is a first step to reduce the residual uncertainty in the parton evolution to percent level precision.
Keyword(s): quark: splitting function ; quantum chromodynamics: perturbation theory ; parton: distribution function ; evolution equation ; higher-order: 4 ; quark quark ; anomalous dimension ; off-shell ; CERN LHC Coll
![]() |
The record appears in these collections: |
Journal Article
Four-loop splitting functions in QCD – The quark-quark case
Physics letters / B 842, 137944 (2023) [10.1016/j.physletb.2023.137944]
Files
Fulltext by arXiv.org
BibTeX |
EndNote:
XML,
Text |
RIS