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Abstract

We have computed the even-N moments N < 20 of the pure-singlet quark splitting function Pp,
at the fourth order of perturbative QCD via the anomalous dimensions of off-shell flavour-singlet
operator matrix elements. Our results, derived analytically for a general gauge group, agree with
all results obtained for this function so far, in particular with the lowest six even moments obtained
via physical cross sections. Using these results and all available endpoint constraints, we construct
approximations for P, at four loops that should be sufficient for most collider-physics applica-
tions. Together with the known results for the non-singlet splitting function P,{ at this order, this
effectively completes the quark-quark contribution for the evolution of parton distribution at N>LO
accuracy. Our new results thus provide a major step towards fully consistent N3LO calculations at
the LHC and the reduction of the residual uncertainty in the parton evolution to the percent level.



Collinear factorization in Quantum Chromodynamics (QCD) is controlled by a set of universal
functions, the splitting functions P, governing the scale dependence of the parton distribution func-
tions (PDFs), which are essential ingredients in all theoretical predictions for scattering processes
with initial-state hadrons [1]. The splitting functions are calculable in the perturbative approach to
QCD. They have been known, for a long time, at three-loop accuracy [2, 3], which is the next-to-
next-to-leading order (NNLO or N?LO) in the expansion in powers of the strong coupling 0.

This theoretical accuracy, however, faces challenges due to the precision of the currently avail-
able experimental data collected at the Large Hadron Collider (LHC). Also, the expectations for
the LHC’s Run 3, the high-luminosity phase (HL-LHC) as well as the plans for the future Electron-
Ton Collider (EIC) [4] indicate the need to increase the precision by one quantum loop to N°LO
accuracy. This will reduce the uncertainty in the parton evolution to percent-level precision. It is
also required for a fully consistent use of the available N>LO QCD predictions for hard scatter-
ing cross sections for key processes [5-8] in proton-proton collisions at at the LHC as well as for
structure functions in deep-inelastic electron-proton scattering (DIS) probed by the EIC [9-11].

The PDFs of quarks and antiquarks of flavour i and of the gluon, ¢,(x,u?), g;(x,u*) and
g(x,u?), are given by the respective number distributions in the fractional hadron momentum x
at the factorization scale u. For ng flavours, the flavour-summed quark distributions

ny
Z q;(x, 1) + Gi(x, 1%)] (1)

define the singlet quark distribution g,, which mixes under QCD evolution with the gluon distribu-
tion g through the matrix of splitting functions P;; as
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where ® stands for the Mellin convolution in the momentum variable x. The perturbative expansion
in the strong coupling with a; = as(u?)/(47) can be written as

(x, 0t Z ar+1pl 3)

such that the terms Pigk) correspond to the QCD predictions at N¥LO accuracy. Here and below we
identify, without loss of information, the renormalization scale with the scale u in eq. (1).

The quark-quark splitting function Pyq in eq. (2) is the sum Pyq = P,{ § T Py, where P.5 denotes
the splitting function for non-singlet combinations of the quark-antiquark sums g; + g;, and Py is
the pure-singlet contribution. The results for the four-loop (N*LO) non-singlet splitting functions
PIES ) are complete in the planar limit, i.e., the large-n, limit of a colour SU(n.) gauge group, and

very good approximations for the remaining non-planar terms have been obtained [12, 13].

In this letter, we address the computation of the pure-singlet part Pég ) at N3LO. Together with

the result for PI(EH, this provides the quark-quark splitting functions at four loops. We present



analytic results for the first 10 even Mellin moments N < 20 of Pés ) (x), valid for a general compact
simple gauge group. These correspond (up to a negative sign, which is a standard convention) to
the anomalous dimensions 'ypz ,

1
W) = =[x . (4)
0

This extends previous results on this function, which is already known in the limit of large num-
bers of flavours ny [14]. Following the approach of refs. [2,3] via physical quantities in inclusive

DIS, also low moments (N < 8) of Pp(s3 ) have been presented before [15], which have been used
in approximations [16] for applications in NLO PDF fits. For the parts proportional to the quar-
tic colour factor dﬁdedI?de (see below), the moments up to N = 16 have been derived [17] by
computing anomalous dimensions of off-shell flavour-singlet operator matrix elements (OME's).

Here we extend the method of OME:s further. The starting point is the standard set of the spin-N
twist-two irreducible flavour-singlet quark and gluon operators, given by

0({]/"17"'7/“N} _ %WY{MD/JZ._.D“N}W—i—traceleSS,

Oélulv“'“uN} _ % FViu prs L piv-1 F"Nv}+traceless, 5

where y represents the quark field, F,y the gluon field-strength tensor and D, = d, —igA, the
covariant derivative with the coupling g, where g?/(4m) = 0. The curly brackets {...} denote
symmetrization. Flavour non-singlet operators have been discussed in ref. [12].

Contraction of the Lorentz indices with N identical light-like (A.A = 0) vectors A* allows for
a compact notation in terms of the quantities

FIO = AGFRVO AT = AARC D =ADM, 3 =AM, 6)

with labels a in the adjoint representation of the colour gauge group. The projection of eq. (5)
defines the scalar operators for even N (suppressing the index N here and below) as

Oq = %WADN_Zw, O, = %FV“DZ;ZFW’. (7
These physical (gauge-invariant) operators, when evaluated in general Green’s functions, mix un-
der renormalization with non-physical, so-called alien operators, which also involve (anti-)ghost
fields ¢ and ¢. The general theory of the renormalization of gauge-invariant operators has been
worked out in a series of classical papers by Dixon and Taylor [18], Kluberg-Stern and Zuber
[19,20] and Joglekar and Lee [21-23]. These led the way to explicit computations at two loops
in ref. [24], which solved an issue that had beset the pioneering calculation of ref. [25], and
refs. [26,27]. Recently, the complete three-loop renormalization via a direct calculation of the
alien counter-terms has been published [28].

A general procedure to construct the basis of alien operators was formulated by two of us in
ref. [29] and was used to construct an explicit basis up to four loops for any fixed spin N. Building



on this work, we here consider the four-loop renormalization of singlet quark operators. For this
we need two sets of alien operators, O} = Oé + 0; + O! with i = I, 11, which read

0L = ngyArty 0V %A,),
Ol = n(D.F)* (" ?A,) ,
ol = —m @) (" 'c,) (8)

with a coupling | which is a function of N and o, and

o' = ¢@yhLy Y ;1™ (0'Ap) (9/A) |
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i+j=N-3
ol = —g Y m;f (9e.) (9'4p) (07'c) 9)
i+j=N—-3

where 1 (f) denote the fundamental (adjoint) colour-group generators. The couplings 1 ;j and
K;; obey constraints due to the (anti-)BRST symmetry of the alien operators [29], viz

Nij = — i(—l)sﬂ < stJ )miis)(m) = 2Kij+ﬂ( i+j'+1 ) - (10)

s i
s=0
Hence the k;; are dependent on the 1;; for which we obtain a compact expression in terms of
binomial coefficients
i N-2 N-2
my =m0 =3 (77) = (5] an

where, in the present case, the coupling N = n(o,N) from eq. (8) is found to factorize to the
loop-order required.

The physical operators in eq. (7) mix under renormalization with the alien ones in egs. (8)
and (9). The latter are summarized from now on collectively as Oa and we denote renormalized
operators as [O];, so that

Oq Zaq Zag Zaa [O]q
Og | = | Zeq Zeg Zea [0l | (12)
Oa Zaqg Zag Zaa [O]a

where the Z-factors are determined in terms of the anomalous dimensions Tij in eq. (4) (and the cor-
responding ones Yqa, Yea etc. including the alien operators) through the standard renormalization
group equation

d 0 90

2

u d—'uzzij = (B((Xs) o +Y3§£) Zij = =Yk Zyj- (13)
Here [3 is the QCD B-function and y; the gluon anomalous dimension, all known to a more than
sufficiently high order [30-33]. The Z;; involving the alien operators can be gauge dependent, § is

the gauge parameter with & = 1 for Feynman gauge. Moreover, since the alien operators cannot
mix into the set of physical operators [21-23], the entries Zaq and Zag in eq. (12) have to vanish.
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The setup of our OME computations follows previous work [12, 17]. The necessary Feynman
rules are determined from eqs. (7) — (11), which are sufficient for the present computations. The
diagrams for the OMEs Aj; = (j(p)|Oi|j(p)) with (physical or alien) spin-N twist-two operators
O; inserted in Green’s functions with off-shell quarks, gluons or ghosts have been generated using
QGRAF [34] and then processed, see ref. [35], by a FORM [36-38] program which collects self-
energy insertions, determines the colour factors [39] and classifies the topologies according to the
conventions of the FORCER package [40]. For computational efficiency, diagrams with the same
colour factor and topology are merged into meta-diagrams.

An optimized in-house version of FORCER, briefly discussed in ref. [13], is employed to
perform the integral reductions for fixed integer values of N. In practice, the range in N is limited
by the occurrence of high powers of scalar products in the loop integrals for high values of N,
which lead to large-size expressions and long computing times in the topology transformations
and parametric reductions encoded in FORCER. The divergences in the OMEs Aj; are treated in
dimensional regularization with D = 4 — 2¢ dimensions, hence the Z-factors in eq. (12) are simple
Laurent series in € and the anomalous dimensions Y;; can be read off from their single poles 1/¢.

For the quark-quark splitting functions, the physical OMEs Ayq have been obtained at even
N <20 up to four loops. This includes both the flavour non-singlet parts [13] and the pure-singlet
contributions addressed in the present letter. The physical OMEs Age, Agq and Ag, and those
with the alien operators inserted into a quark two-point function, Apq, have been computed up
to three loops. All others were needed at two loops only for the extraction of Pég ) at four loops
using eq. (13). This leads to the following results for the N>LO contributions to the pure-singlet

anomalous dimensions in eq. (4) for QCD, i.e., the gauge group SU(n, = 3),

yps (N=2) = —691.5937093n,+84.77398149n? + 4.466956849n}
yps (N=4) = —109.3302335n,+8.776885259n? +0.306077137n},
YW (N=6) = —46.03061374n, +4.744075766n} +0.042548957 n},
YW(N=8) = —24.01455020n, +3.235193483n? —0.0078892561;,
Y (N=10) = —13.73039387n,+2.375018759n% —0.021029241n},
Y (N=12) = —8.152592251n, + 1.819958178 % —0.024330231n},
3

YW (N=14) = —4.840447180n, + 1.438327380n7 —0.024479943n}
Y (N=16) = —2.751136330n, + 1.164299642n? —0.023546009
Y (N=18) = —1.375969240n,+0.960873318n? —0.022264393 17,

YW (N=20) = —0.442681568n, +0.805745333n7 —0.020918264n; . (14)

The results for N < 8 agree with those obtained via cross sections for inclusive DIS in ref. [15].
As a further check, we have extended those DIS computations of PI§§ ) to N =10 and N = 12, their
results also agree with eq. (14). The large-n parts agree with all-N results of ref. [14]. In addition,
the renormalization constants involving alien operators agree to the loop order required here with
those recently published in ref. [28].



The analytic expressions for 'YI(,? for a general gauge group are given in app. A in egs. (A.3) —

(A.12). They contain rational numbers and Riemann-{ values, i.e. {, with n = 3,4,5. New all-N
results for yg) based on egs. (A.3) — (A.12) and, in cases, even higher fixed-N OME computations,
have been derived for specific colour factors or terms proportional to certain Riemann-C values.

They can be expressed in terms harmonic sums [41,42], which are recursively defined by

y (£1)'
Sim17m27-“7md(N) = iml
i=1

Sm27...,md(i> ) (15)

and their weight w is the sum of the absolute values of the indices m,. In the results for the n-loop
anomalous dimensions, quantities up to w = 2n — 1 occur, which can be composed of harmonic
sums, Riemann-{,, values (m > 3), and simple denominators, D§ =(N+a) —k_ The latter count as
objects of weight m and k, respectively. Due to (partial) conformal symmetry, especially the sums
with the highest weights often arise with two specific (reciprocity respecting, cf. the discussion in
ref. [12]) combinations of simple denominators,

| 1

M= 5 yer P b N(N+1)’ (16)
1 1 3

VENDT N o D= (N-1)(N+2) " (17

With this notation (suppressing the argument N of the harmonic sums for brevity), we can
(3)

summarize the known and new all-N results for y,s". The leading large—nf contribution has been
published in eq. (3.10) of ref. [14],

YR V), = 16/9C; {2/3 (25171,1 —3§3) (911 +6m2 —4v> +4/381, (111)0 —13D3
+6D — 17D —4D? + 12D} +2D, +8 D> +4D,1> —2/98; (9400 —98DZ +87D}
— 18D} —226D; +100D7 4+ 111 D3 —90D} + 128D, +88D3 —48D3 —|—4D,1)
+1/9 (521)0 — 118D} 4 146 D] — 87D§ + 18D, — 412Dy +430D% —54D3 — 309D}

+198D7 +364D, +72D3 —176D3 +96D% —4D_; ) ¢. (18)
1 2 2 2

Additional all-N information can be obtained for the terms involving Riemann-( values, due to the
reduced complexity of the harmonic sums. The reconstruction of the all-N expressions follows the
same approach as in the nonsinglet case in ref. [12]. The {3 dependence of the quartic colour factor
d I%b“idl‘ébwl /n. is given by (see app. A for the definition of all colour factors),

TS (V)

= 256{ (S3-+45-2,—253) (3-6n)

CS ”f d%bedd%bed/nc
+ (25171 - 52) (27n o2 32/3\/) +S 5 ( —1/3+92/30 42002 — 32/3\/)

+Sl<—70n—68n2—24n3+64/3v) +8/3n—3n2}. (19)



This is a new result based on computing the relevant OMEs for N < 22. Likewise, for the colour
factor njg C % the term proportional to {3 reads

YD) ez = 32/9{251(9n+6n2—4v)—335Do+145D3 663
3 CF

+287D; + 187D +90D3 +36D, +8D3 +12D_ — 16D%, } : (20)

which is new as well. This expression has been derived from and verified using moments up to

N =52, which are part of the computations of the nf QED contributions to yi(j3) to very high N [43].
Next, the {4 part in yg) (N) can be derived with the help of the no-n? conjecture /theorem [44,
45]. This has been done in ref. [46], eq. 9).! Egs. (A.3) — (A.12) agree with this result,

(3)

T )| = 16C; (cAch){anf (46v—8v2—117n—87n2—18n3>
4
+(Cy—Cp)ny <38v—8v2— 195/21 — 6902 — 121+ S1 (8v — 181 — 12112))
+n} (15n+10n2—20/3v)} . 1)

Finally, with the moments up to N = 20 the terms with {5 can be readily determined and
verified for all colour factors, thus extending the result in eq. (3.13) ref. [17], where the all-N (s
contributions to the quartic colour factors have been given,

3
YD) = 1601, C; (9n+6n2_4v) +80/3n,C, C} (—911 —6n2+4v>
+40/9n,C3C; (— | —214m — 14412+ 104v>

abcddabcd
+320/3n, HCR (—1+56n+36n2—16v>. 22)
n

c

Expressions in x-space for the leading large—nf part of eq. (18) have been presented in ref. [14],
eq. (4.21). On the other hand, the N-space terms with Riemann-{ values do not correspond to
the x-space contributions with Riemann- values, as the inverse Mellin transformation generates
additional terms with {,,. Similarly, it is not possible to read off the coefficients of , in the limit
N — oo from egs. (19) — (22), as non-{ harmonic sums contribute to these.

For phenomenology applications, the moments in eq. (14) can be used to construct approximate
representations for the n} and nJ% parts of P}gs ) (x), subject to the constraints imposed by the known
terms in the limits x — 0, 1. At small x, the coefficient of the leading logarithm (In®x) /x is known
since long [47], as well as those of the highest three sub-dominant logarithms In* x with k = 6,5, 4,
see ref. [48]. At large x, the leading terms are of the form (1 —x)/In*(1 —x) with j > 1 and k < 4.
The coefficients for k = 4,3 are known [49] for all j. With the 10 Mellin moments N < 20 in
eq. (14), the coefficients of all remaining unknown small-x and large-x (for j=1) terms can be
“fitted’ together with a three-parameter interpolating function. Thus all approximations include

The coefficients proportional to v in egs. (9) and (12) in ref. [46] need to be replaced as follows: v — v/3. Note
further that the definition of v in ref. [14] differs from that in ref. [17] and the present paper by this factor of 3.
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¢ the next-to-leading and next-to-next-to-leading small-x terms: (Inx)/x and 1/x,
« the remaining three sub-dominant small-x logarithms: In*x with k = 3,2, 1,

* the two remaining j = 1 large-x terms: (1 —x)In*(1 —x) with k =2, 1.

Choosing 10 two-parameter polynomials together one function that includes lnk(l —x) withk=1
or 2 or the dilogarithm Li,(x) (suitably suppressed as x — 1), we have thus build 80 trial functions
that fulfil all known constraints. These functions are shown ne = 4 by the black-dotted curves
in the right part of fig. 1; other values of n, show qualitatively the same behaviour. As a check,

exactly the same procedure has been applied to the NNLO splitting function Pp(s2 ) (x), where it can
be compared with the exact result [3]; this comparison is shown in the left part of the figure.

Since our approximation procedure passes this test (and others), we have selected two represen-

tatives for each physically relevant value of ng that indicate the remaining uncertainty in Pp(s ) (x).

The chosen approximation, shown in red in fig. 1, are, with x; = 1—x, L; = In(1—x) and Ly = Inx,

p0 (np=3)

oAl =3,%) = pJo T (x) +67731x1Lo/x + 2741001 /x + 40006 Lj + 10620 Lj

+353656x1 Lo — 2365.1x1L3 — 7412.1x1 Ly + 1533.0x7L3 — 104493 x1 (1+2x) + 34403 x1x?,

=3
PUs(np=3,x) = pé’jfo (%) + 5459311 Lo /x + 179748 x1 /x — 2758.3 L3 — 103604 L2
+4700.0x;Lo — 1986.9x; L3 — 2801.2x1L; — 6005.9x7L7 — 195263 x| + 12789x1x(1 +x),

(23)

=4
PO (ny=4,x) = plﬁ’;fo )(x) + 90154, Lo /x + 359084 x, /x+ 52525 L3 + 13869 L2

+ 461167 xLo —2491.5x, L3 — 7498 .2x Ly + 1727.2x1L3 — 136319x (1+2x) + 45379 x1x2,
G, _ _ (=9 3 2
Pyp(ny=4,x) = poJi 7 (x) +72987x1Lo/x+235802x1 /x —3350.9 L — 135378 L§
+5212.9x1Lg — 1997.2x1 L3 — 1472.7x1 Ly — 8123.3x7L7 — 254921 x1 4 17138 x1x(1 +x),
(24)
n,=5
PO\ (ny=5.x) = pésj’o J(x) 4+ 112481 x1Lo /x + 440555 x1 /x + 64577 L3 + 16882 12
+562992x Lo — 2365.7 x L3 — 6570.1x L1 + 1761.7x7L7 — 166581 x; (1+2x) 4+ 56087 x1x°,
n,=5
pY =) (x) +91468x1 Lo /x + 289658 /x — 3814.9L3 — 165795 L3

ps,B<nf = 57x) = ppst
+4908.9x1Ly — 1760.8x1 L3 +804.5x;L; — 10295 x3L7 —311749x1 + 21521 x1x(1 +x), (25)

with the known endpoint contribution, with coefficients rounded to seven significant figures,

("_f)

Pps () = nf{1749.227L(2) /x—(7.506173 —0.7901235n,)L§

+(28.54979 4 3.792593n) Ly — (854.8001 — 77.36626 1, +0.1975309n7) L
— (199.1111 — 13.69547 ny)x7L] — 13.16872x7L] — (247.5505 — 40.55967 ny

+1.580247nf)x1 L] — (56.46091 — 3.621399 nf)le‘f} . (26)
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Figure 1: 80 trial functions, constructed as described in the text, for the splitting functions Pp(sn ) (x) at
ne = 4. At n = 2 (left panel) the known exact result is shown by the solid (blue) line. At n = 3 (right panel)
two functions, shown by the solid (red) lines, are chosen to represent the remaining uncertainty.
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Figure 2: Left: The NLO, NNLO and N*LO approximations for Pps(x) for a fixed value o(u3) = 0.2 of
the strong coupling and n, = 4. Right: The resulting perturbative expansion of the contribution of Pgq to the
scale derivative of the singlet quark PDF g in eq. (2) for the initial distribution (28).



Specifically, we note that egs. (23) — (25) include a numerical prediction, with a precision of +10%,
of the so far uncalculated coefficient of the next-to-leading small-x logarithm (Inx)/x of Pés ) (x)

for ne =3,4,5. The above uncertainty bands also lead to the following predictions for the yg) (N)
at N = 22 (with brackets indicating the error on the last digits),

Yo (N=22) = 6.2478570(6), 10.5202730(8), 15.6913948(10) for n, =3,4,5. (27)

The numerical implications for the evolution of g  due to the quark-quark splitting functions in
eq. (24) are illustrated in fig. 2 for our default value ne = 4. We show the perturbative expansion
for Pps alone and for the convolution Pygq ® g5 through N3LO, in the latter case using the same
schematic (order-independent) model input [3] for the singlet quark PDF in eq. (1),

xqs(x,u5) = 0.6x 93 (1—x)*7 (1+5.0x"%) (28)

together with o (,ug) = 0.2. The latter value of the strong coupling corresponds to scales in the

range ,ug ~ 25...50 GeV? for o (MZZ) =0.114...0.120 beyond the leading order. This fixed input

facilitates a direct comparison of effects of the various perturbative order for the splitting function
3)

Pyq = PHJSr + Pps, where the four-loop results for Prgs * have been taken from refs. [12,13].

Fig. 2 shows that the convolution of the splitting functions with g, dampens the residual small-x
uncertainties induced by the approximations A and B in eq. (24). The uncertainties in these con-
volutions are practically negligible down to x < 103 and, even if our error band were to under-
estimate the uncertainty by, say, a factor of 2, perfectly tolerable even at x as small as x ~ 10 4.
Further phenomenological studies, such as the scale stability of the parton evolution in eq. (2) un-
der the variation of the renormalization scales require additional information at four loops on the
other splitting functions Pye, Pyq and Pye. These will be subject of forthcoming publications.

With the four-loop results for the pure-singlet quark splitting function Pps presented here, we
have provided a major step towards improving the accuracy of the flavour-singlet parton evolution
by one perturbative order beyond the current state of the art. The evolution of PDFs at N°LO is
expected to achieve percent-level precision, and a brief phenomenological study of our results is
consistent with this expectation. We have shown that the knowledge of 10 Mellin moments of
Pég ) (x), together with the present knowledge of the behavior at the endpoints x — 1 and x — 0, is
sufficient for the construction of approximations that display negligible residual uncertainties in a
wide kinematic range of parton momentum fractions x probed at current and future colliders.
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A Mellin moments of PISS )

Here we provide the exact results for the four-loop pure-singlet anomalous dimensions yg) (N)
at even N < 20 for a general compact simple gauge group. The numerical values in QCD, i.e.,
SU(n. = 3) have been given in eq. (14). The colour factors are C, = n, and Cr. = (n2 —1)/(2n,)
for the quadratic Casimir invariants in SU(n.). The relevant quartic colour factor d g abed g "b“l /ne is
obtained from the symmetrized trace of four generators 7, see, e.g., [12,17,31],
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R nCR = 563 (n>—1)(n*—6n2+18) (A.2)

for the fundamental representation. In QCD: C, = 3, Cr. = 4/3 and d#°?d &< /n, = 5/36.
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The results for 'YL()? at N < 8 in egs. (A.3) — (A.6) have been published before in ref. [15], and
the values at N < 16 of the terms proportional to the quartic group invariant d&4d4<d /n, in

egs. (A.3) — (A.10) have already been obtained in ref. [17]. The nf contributions are known at all
N [11].

A FoRrM file with our results for v, (V) at even N < 20 and all partial all-N expressions in the

main text, and a FORTRAN subroutine of our approximations for the splitting function Pég ) (x) can
be obtained from the preprint server http://arXiv.org by downloading the source. Furthermore
they are available from the authors upon request.
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