Journal Article PUBDB-2023-06162

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Defect‐Promoted Ni‐Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

tbd
Wiley-VCH Weinheim

Advanced materials tbd, 2305573 () [10.1002/adma.202305573]
 GO

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Ni-based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value-added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts’ deprotonation propensity and Faradic efficiency of 5-hydroxymethylfurfural (5-HMF)-to-2,5 furandicarboxylic acid (FDCA, FE$_{FDCA}$) is revealed by thorough density functional theory (DFT) simulations and atomic-scale characterizations, including in situ synchrotron diffraction and spectroscopy methods. The deprotonation capability of ultrathin layer-double hydroxides (UT-LDHs) is regulated by tuning the covalency of metal (M)-oxygen (O) motifs through defect site engineering and selection of M$^{3+}$ co-chemistry. NiMn UT-LDHs show an ultrahigh FE$_{FDCA}$ of 99% at 1.37 V versus reversible hydrogen electrode (RHE) and retain a high FE$_{FDCA}$ of 92.7% in the OER-operating window at 1.52 V, about 2× that of NiFe UT-LDHs (49.5%) at 1.52 V. Ni–O and Mn–O motifs function as dual active sites for HMF electrooxidation, where the continuous deprotonation of Mn–OH sites plays a dominant role in achieving high selectivity while suppressing OER at high potentials. The results showcase a universal concept of modulating competing anodic reactions in aqueous biomass electrolysis by electronically engineering the deprotonation behavior of metal hydroxides, anticipated to be translatable across various biomass substrates.

Classification:

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
Experiment(s):
  1. PETRA Beamline P21.1 (PETRA III)

Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2023-10-11, last modified 2024-01-10


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)