Preprint PUBDB-2025-04648

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Flow-Based Sampling for Entanglement Entropy and the Machine Learning of Defects

 ;  ;  ;  ;  ;  ;  ;

2025

This record in other databases:    

Please use a persistent id in citations: doi:

Report No.: arXiv:2410.14466

Abstract: We introduce a novel technique to numerically calculate Rényi entanglement entropies in lattice quantum field theory using generative models. We describe how flow-based approaches can be combined with the replica trick using a custom neural-network architecture around a lattice defect connecting two replicas. Numerical tests for the ϕ4 scalar field theory in two and three dimensions demonstrate that our technique outperforms state-of-the-art Monte Carlo calculations, and exhibit a promising scaling with the defect size.

Classification:

Note: Phys. Rev. Lett. 134, 151601 (2025). some discussions improved, matches the published version

Contributing Institute(s):
  1. Centre f. Quantum Techno. a. Application (CQTA)
Research Program(s):
  1. 611 - Fundamental Particles and Forces (POF4-611) (POF4-611)
  2. QUEST - QUantum computing for Excellence in Science and Technology (101087126) (101087126)
  3. DFG project G:(GEPRIS)511713970 - SFB 1639: NuMeriQS: Numerische Methoden zur Untersuchung von Dynamik und Strukturbildung in Quantensystemen (511713970) (511713970)
  4. AQTIVATE - Advanced computing, quantum algorithms, and data-driven approaches for science, technology and engineering (101072344) (101072344)
Experiment(s):
  1. No specific instrument

Appears in the scientific report 2025
Database coverage:
Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Published
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >DESY > >ZEUTHEN > CQTA
Document types > Reports > Preprints
Public records
Publications database
OpenAccess


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;
Flow-based Sampling for Entanglement Entropy and the Machine Learning of Defects
Physical review letters 134(15), 151601 () [10.1103/PhysRevLett.134.151601]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS


 Record created 2025-10-29, last modified 2025-12-17


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)