001     639387
005     20251119161931.0
024 7 _ |a 10.1021/acsnano.5c08093
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-04481
|2 datacite_doi
024 7 _ |a openalex:W4413367909
|2 openalex
037 _ _ |a PUBDB-2025-04481
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Strapasson, Guilherme
|0 P:(DE-H253)PIP1108076
|b 0
245 _ _ |a Oxygen Vacancy-Induced Phase Transformations of Iron-Doped Titanium Oxide Nanostructures
260 _ _ |a Washington, DC
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763369927_3432132
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxygen vacancies play a pivotal role in tailoring the electronic, optical, and catalytic properties of reducible metal oxides. Here, we provide a complete overview of oxygen vacancy-induced structural evolution of iron-doped titanium oxide nanomaterials with insights into their synthesis, formation, and crystallization processes. Structural analysis combining multiple techniques reveals the formation of anatase nanoparticles at low Fe loadings (i.e., ≤10 at. % Fe). At intermediate Fe concentrations (i.e., 15–20 at. % Fe), a mixture of anatase and rutile forms with the presence of extended disordered defects similar to crystallographic shear planes. These become more notable at high Fe loadings (i.e., ≥30 at. % Fe) with the complete transition to the rutile phase with a high density of defects. Moreover, we provide important information on the nucleation, growth, and crystallization processes during synthesis, emphasizing the impact of Fe atom incorporation on the TiO$_2$ lattice, the formation of reaction intermediates, and the structural evolution at the nano regime. The ability to control oxygen vacancies and engineer defects in Fe-doped TiO$_2$ allows for the optimization of charge transport, enhancing catalytic activity and tuning optical properties for applications in environmental remediation, sensing, and next-generation semiconductor technologies.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20230285 EC (I-20230285-EC)
|0 G:(DE-H253)I-20230285-EC
|c I-20230285-EC
|x 1
536 _ _ |a FS-Proposal: I-20230183 (I-20230183)
|0 G:(DE-H253)I-20230183
|c I-20230183
|x 2
536 _ _ |a MatMech - Live Tapings of Material Formation: Unravelling formation mechanisms in materials chemistry through Multimodal X-ray total scattering studies (804066)
|0 G:(EU-Grant)804066
|c 804066
|f ERC-2018-STG
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.1-20150101
|6 EXP:(DE-H253)P-P02.1-20150101
|x 0
700 1 _ |a Arjona, Adrián S.
|0 0000-0003-3208-5929
|b 1
700 1 _ |a McPeak, Joseph E.
|0 0000-0001-8677-6405
|b 2
700 1 _ |a Aalling-Frederiksen, Olivia
|0 P:(DE-H253)PIP1086362
|b 3
700 1 _ |a Sapnik, Adam F.
|b 4
700 1 _ |a Baun, Nanna L.
|0 P:(DE-H253)PIP1110813
|b 5
700 1 _ |a Bordallo, Heloisa N.
|b 6
700 1 _ |a Rodella, Cristiane B.
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Zanchet, Daniela
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Jensen, Kirsten M. Ø.
|0 P:(DE-H253)PIP1016581
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acsnano.5c08093
|g Vol. 19, no. 34, p. 30986 - 30999
|0 PERI:(DE-600)2383064-5
|n 34
|p 30986 - 30999
|t ACS nano
|v 19
|y 2025
|x 1936-0851
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/639387/files/oxygen-vacancy-induced-phase-transformations-of-iron-doped-titanium-oxide-nanostructures.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/639387/files/oxygen-vacancy-induced-phase-transformations-of-iron-doped-titanium-oxide-nanostructures.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:639387
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1108076
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1086362
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1110813
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1016581
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21