001     639279
005     20251119161919.0
024 7 _ |a 10.1140/epjc/s10052-025-14341-4
|2 doi
024 7 _ |a 1434-6044
|2 ISSN
024 7 _ |a 1434-6052
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-04380
|2 datacite_doi
024 7 _ |a openalex:W4411523553
|2 openalex
037 _ _ |a PUBDB-2025-04380
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Abramowicz, H.
|b 0
245 _ _ |a Novel silicon and GaAs sensors for compact sampling calorimeters
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762950695_411773
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Two samples of silicon pad sensors and two samples of GaAs sensors are studied in an electron beam with 5 GeV energy from the DESY-II test-beam facility. The sizes of the silicon and GaAs sensors are about 9 $\times $ 9 $\hbox {cm}^2$ and 5 $\times $ 8 $\hbox {cm}^2$, respectively. The thickness is 500 µm for both the silicon and GaAs sensors. The pad size is about 5 $\times $ 5 $\hbox {mm}^2$. The sensors are foreseen to be used in a compact electromagnetic sampling calorimeter. The readout of the pads is done via traces connected to the pads and the front-end ASICs at the edges of the sensors. For the silicon sensors, copper traces on a Kapton foil are connected to the sensor pads with conducting glue. The pads of the GaAs sensors are connected to bond-pads via aluminium traces on the sensor substrate. The readout is based on a dedicated front-end ASIC, called FLAME. Pre-processing of the raw data and deconvolution is performed with FPGAs. The whole system is orchestrated by a Trigger Logic Unit. Results are shown for the signal-to-noise ratio, the homogeneity of the response, edge effects on pads, cross talk and wrongly assigned signals due to the readout traces.
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 0
536 _ _ |a AIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761)
|0 G:(EU-Grant)101004761
|c 101004761
|f H2020-INFRAINNOV-2020-2
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Soto, M. Almanza
|0 0009-0000-7957-1487
|b 1
700 1 _ |a Benhammou, Y.
|b 2
700 1 _ |a Elad, M.
|b 3
700 1 _ |a Firlej, M.
|0 0000-0002-1084-0084
|b 4
700 1 _ |a Fiutowski, T.
|0 0000-0003-2342-8854
|b 5
700 1 _ |a Ghenescu, V.
|b 6
700 1 _ |a Grzelak, G.
|b 7
700 1 _ |a Horn, D.
|b 8
700 1 _ |a Huang, S.
|0 P:(DE-H253)PIP1094891
|b 9
700 1 _ |a Idzik, M.
|b 10
700 1 _ |a Irles, A.
|0 P:(DE-H253)PIP1024692
|b 11
700 1 _ |a Levy, Aharon
|0 P:(DE-H253)PIP1002090
|b 12
700 1 _ |a Levy, Itamar
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lohmann, Wolfgang
|0 P:(DE-H253)PIP1003723
|b 14
|e Corresponding author
700 1 _ |a Moroń, J.
|b 15
700 1 _ |a Neagu, A. T.
|0 0000-0001-6788-4320
|b 16
700 1 _ |a Pietruch, D.
|b 17
700 1 _ |a Potlog, P. M.
|0 0000-0002-5595-3437
|b 18
700 1 _ |a Świentek, K.
|0 0000-0001-6086-4116
|b 19
700 1 _ |a Żarnecki, A. F.
|b 20
700 1 _ |a Zembaczyński, K.
|b 21
773 _ _ |a 10.1140/epjc/s10052-025-14341-4
|g Vol. 85, no. 6, p. 684
|0 PERI:(DE-600)1459069-4
|n 6
|p 684
|t The European physical journal / C
|v 85
|y 2025
|x 1434-6044
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/639279/files/s10052-025-14341-4.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/639279/files/s10052-025-14341-4.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:639279
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1094891
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1024692
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1002090
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1003723
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:05:14Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J C : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-27
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-H253)Z_ATUP-20210408
|k Z_ATUP
|l Z_ATUP
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Z_ATUP-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21