001     636202
005     20250817054533.0
024 7 _ |a 10.1021/acsnano.5c02875
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-03627
|2 datacite_doi
024 7 _ |a altmetric:179111519
|2 altmetric
024 7 _ |a pmid:40627349
|2 pmid
037 _ _ |a PUBDB-2025-03627
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Klemeyer, Lars
|0 P:(DE-H253)PIP1083268
|b 0
|u desy
245 _ _ |a Spatially Resolved In Situ X-ray Absorption Spectroscopy Studies of ZnS Nanoparticle Synthesis at the Water–Toluene Interface
260 _ _ |a Washington, DC
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755249957_3067124
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Two-phase synthesis is a well-established approach for achieving precise control of the nanoparticle properties. However, studying and understanding chemical transformations in such a spatially heterogeneous system is challenging. In this work, we introduce a two-phase synthesis route for ZnS nanoparticles (ZnS NPs) at the water–toluene interface. By employing spatially resolved in situ high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) combined with density functional theory (DFT) calculations, we track the diffusion of Zn$^{2+}$ species at the interface, identify key reaction intermediates, and monitor the nucleation and growth of ZnS NPs within the toluene phase. We propose the formation of a [Zn(H$_2$O)$_6$]$^{2+}$ complex upon dissolving Zn(Ac)$_2$ in water and the diffusion of Zn$^{2+}$ ions from water to toluene driven by the formation of an octahedral [Zn(OA)$_6$]$^{2+}$ complex (OA = oleylamine). Furthermore, by complementing HERFD-XAS with total X-ray scattering analysis, we show the formation of an intermediate tetrahedral [Zn(SR)4]$^{2+}$ complex at 60 °C and its successive transformation to noncrystalline ZnS nuclei at 80 °C and crystalline ZnS NPs starting at 100 °C. Thus, we demonstrate how in situ X-ray spectroscopy can elucidate the coordination and diffusion of Zn$^{2+}$ ions, and, in combination with X-ray scattering studies, identify the emergence of atomic and electronic structures during the two-phase synthesis of ZnS nanoparticles.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a LINCHPIN - A platform to LINk between CHemistry and PhysIcs of colloidal Nanomaterials (818941)
|0 G:(EU-Grant)818941
|c 818941
|f ERC-2018-COG
|x 2
536 _ _ |a AIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 3
536 _ _ |a GRK 2536 - GRK 2536: Hybridstrukturen auf der Nanometerskala: Chemische Konzepte zur Herstellung heterogener Nanostrukturen mit anisotropen Materialeigenschaften (NANOHYBRID) (408076438)
|0 G:(GEPRIS)408076438
|c 408076438
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.1-20150101
|6 EXP:(DE-H253)P-P21.1-20150101
|x 0
700 1 _ |a Caddeo, Francesco
|0 P:(DE-H253)PIP1092080
|b 1
700 1 _ |a Gröne, Tjark L. R.
|0 P:(DE-H253)PIP1098796
|b 2
700 1 _ |a Harouna-Mayer, Sani Y.
|0 P:(DE-H253)PIP1083208
|b 3
700 1 _ |a Jessen, Brian
|0 P:(DE-H253)PIP1090769
|b 4
700 1 _ |a Zito, Cecilia A.
|0 P:(DE-H253)PIP1085597
|b 5
700 1 _ |a Kopula Kesavan, Jagadesh
|0 P:(DE-H253)PIP1085745
|b 6
700 1 _ |a Dippel, Ann-Christin
|0 P:(DE-H253)PIP1010723
|b 7
|u desy
700 1 _ |a Igoa Saldana, Fernando
|0 P:(DE-H253)PIP1100821
|b 8
|u desy
700 1 _ |a Mathon, Olivier
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Glatzel, Pieter
|0 0000-0001-6532-8144
|b 10
700 1 _ |a Koziej, Dorota
|0 P:(DE-H253)PIP1031321
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acsnano.5c02875
|g Vol. 19, no. 28, p. 25710 - 25719
|0 PERI:(DE-600)2383064-5
|n 28
|p 25710 - 25719
|t ACS nano
|v 19
|y 2025
|x 1936-0851
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/636202/files/PDF-file.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/636202/files/PDF-file.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:636202
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1083268
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1083268
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1092080
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1098796
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1083208
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1090769
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1085597
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1085745
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1085745
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1010723
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1100821
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1031321
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21