000633812 001__ 633812
000633812 005__ 20250827212544.0
000633812 0247_ $$2doi$$a10.1103/PhysRevB.111.024105
000633812 0247_ $$2ISSN$$a2469-9950
000633812 0247_ $$2ISSN$$a2469-9977
000633812 0247_ $$2ISSN$$a0163-1829
000633812 0247_ $$2ISSN$$a0556-2805
000633812 0247_ $$2ISSN$$a1095-3795
000633812 0247_ $$2ISSN$$a1098-0121
000633812 0247_ $$2ISSN$$a1538-4489
000633812 0247_ $$2ISSN$$a1550-235X
000633812 0247_ $$2ISSN$$a2469-9969
000633812 0247_ $$2openalex$$aopenalex:W3215915569
000633812 0247_ $$2openalex$$aopenalex:W3216273952
000633812 0247_ $$2openalex$$aopenalex:W3216865553
000633812 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02414
000633812 037__ $$aPUBDB-2025-02414
000633812 041__ $$aEnglish
000633812 082__ $$a530
000633812 1001_ $$0P:(DE-H253)PIP1104280$$aKarmakar, Sabyasachi$$b0
000633812 245__ $$aEvidence of quadratic time dependence of the kinetics in a continuous order-disorder transition
000633812 260__ $$aWoodbury, NY$$bInst.$$c2025
000633812 3367_ $$2DRIVER$$aarticle
000633812 3367_ $$2DataCite$$aOutput Types/Journal article
000633812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756282519_3444325
000633812 3367_ $$2BibTeX$$aARTICLE
000633812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000633812 3367_ $$00$$2EndNote$$aJournal Article
000633812 520__ $$aKinetics of order-disorder transitions including melting in low-dimensional systems is theoretically predicted to be heterogeneous that start by nucleation in defect sites at lower than homogeneous bulk-melting temperature requiring substantially lower energy barrier. We probed kinetics of such transition in thin multilayered films using x-ray scattering and in situ atomic force microscopy (AFM) studies. X-ray results show linear increase with time in in-plane separation of ordered domains while in situ AFM measurements show a linear increase in height of disordered domains with time. The structure factor of the diffraction peak reduces linearly with square of time as the material disorder.
000633812 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000633812 536__ $$0G:(EU-Grant)101007417$$aNEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)$$c101007417$$fH2020-INFRAIA-2020-1$$x1
000633812 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000633812 693__ $$0EXP:(DE-H253)Nanolab-04-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-04-20150101$$aNanolab$$eDESY NanoLab: Microscopy$$x0
000633812 7001_ $$0P:(DE-H253)PIP1017263$$aMukhopadhyay, Mrinmay Kumar$$b1$$eCorresponding author
000633812 7001_ $$0P:(DE-H253)PIP1013113$$aSanyal, Milan$$b2$$eCorresponding author
000633812 7001_ $$0P:(DE-H253)PIP1088322$$aMeinhardt, Alexander$$b3
000633812 7001_ $$0P:(DE-H253)PIP1019138$$aKeller, Thomas F.$$b4
000633812 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.111.024105$$gVol. 111, no. 2, p. 024105$$n2$$p024105$$tPhysical review / B$$v111$$x2469-9950$$y2025
000633812 8564_ $$uhttps://journals.aps.org/prb/abstract/10.1103/PhysRevB.111.024105
000633812 8564_ $$uhttps://bib-pubdb1.desy.de/record/633812/files/Karmakar%20et%20al._2025_Physical%20Review%20B_Evidence%20of%20quadratic%20time%20dependence%20of%20the%20kinetics%20in%20a%20continuous%20order-disorder%20transition.pdf$$yOpenAccess
000633812 8564_ $$uhttps://bib-pubdb1.desy.de/record/633812/files/Karmakar%20et%20al._2025_Physical%20Review%20B_Evidence%20of%20quadratic%20time%20dependence%20of%20the%20kinetics%20in%20a%20continuous%20order-disorder%20transition.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000633812 909CO $$ooai:bib-pubdb1.desy.de:633812$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
000633812 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104280$$aExternal Institute$$b0$$kExtern
000633812 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017263$$aExternal Institute$$b1$$kExtern
000633812 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013113$$aExternal Institute$$b2$$kExtern
000633812 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1088322$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000633812 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019138$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000633812 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000633812 9141_ $$y2025
000633812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
000633812 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000633812 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000633812 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000633812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000633812 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x0
000633812 980__ $$ajournal
000633812 980__ $$aVDB
000633812 980__ $$aUNRESTRICTED
000633812 980__ $$aI:(DE-H253)FS-NL-20120731
000633812 9801_ $$aFullTexts