001     632041
005     20250723110015.0
024 7 _ |a 10.1016/j.jallcom.2025.180013
|2 doi
024 7 _ |a 0925-8388
|2 ISSN
024 7 _ |a 1873-4669
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-02090
|2 datacite_doi
024 7 _ |a openalex:W4408865220
|2 openalex
037 _ _ |a PUBDB-2025-02090
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Firlus, Alexander
|0 P:(DE-H253)PIP1092410
|b 0
|e Corresponding author
245 _ _ |a The origin of magneto-structural coupling in Fe-based bulk metallic glasses
260 _ _ |a Lausanne
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751983487_2380180
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a All ferromagnetic Fe-based bulk metallic glasses show the Invar effect. It is a magnetic effect that reduces the coefficient of thermal expansion and comes in two forms, a step-type and a peak-type effect. Here, we study the atomic arrangement of an (Fe$_{71.2}$B$_{24}$Y$_{4.8}$)$_{96}$Nb$_4$ bulk metallic glass as a function of temperature and across more than six orders of magnitude in length scale. Combining various synchrotron-based X-ray scattering techniques we show that the Invar effect originates at the atomic scale within the Fe–Fe network. We find no signs of increased spatial correlations due to the ferromagnetic interactions. This shows that no structural rearrangement occurs at the Curie temperature and that the Invar effect is purely of energetic nature. We conclude that the Invar effect has a fundamental base that results from the magnetic interactions of Fe–Fe bonds. Based on this, we provide a model for the magnetic interactions that create the Invar effect in amorphous materials.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20210311 EC (I-20210311-EC)
|0 G:(DE-H253)I-20210311-EC
|c I-20210311-EC
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P62
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P62-20221101
|6 EXP:(DE-H253)P-P62-20221101
|x 0
700 1 _ |a Stoica, Mihai
|0 P:(DE-H253)PIP1011197
|b 1
700 1 _ |a Wright, Jonathan
|b 2
700 1 _ |a Sun, Xiao
|0 P:(DE-H253)PIP1018539
|b 3
700 1 _ |a Schäublin, Robin E.
|0 P:(DE-H253)PIP1100442
|b 4
700 1 _ |a Löffler, Jörg F.
|0 P:(DE-H253)PIP1098230
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.jallcom.2025.180013
|g Vol. 1022, p. 180013 -
|0 PERI:(DE-600)2012675-X
|p 180013
|t Journal of alloys and compounds
|v 1022
|y 2025
|x 0925-8388
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/632041/files/2025JAlCom_Firlus.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/632041/files/2025JAlCom_Firlus.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:632041
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1092410
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1011197
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1018539
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1018539
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1100442
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1098230
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J ALLOY COMPD : 2022
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ALLOY COMPD : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-S-20190712
|k FS-PET-S
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 _ _ |a I:(DE-H253)FS-PET-S-20190712
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21