000632041 001__ 632041
000632041 005__ 20250723110015.0
000632041 0247_ $$2doi$$a10.1016/j.jallcom.2025.180013
000632041 0247_ $$2ISSN$$a0925-8388
000632041 0247_ $$2ISSN$$a1873-4669
000632041 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02090
000632041 0247_ $$2openalex$$aopenalex:W4408865220
000632041 037__ $$aPUBDB-2025-02090
000632041 041__ $$aEnglish
000632041 082__ $$a540
000632041 1001_ $$0P:(DE-H253)PIP1092410$$aFirlus, Alexander$$b0$$eCorresponding author
000632041 245__ $$aThe origin of magneto-structural coupling in Fe-based bulk metallic glasses
000632041 260__ $$aLausanne$$bElsevier$$c2025
000632041 3367_ $$2DRIVER$$aarticle
000632041 3367_ $$2DataCite$$aOutput Types/Journal article
000632041 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751983487_2380180
000632041 3367_ $$2BibTeX$$aARTICLE
000632041 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000632041 3367_ $$00$$2EndNote$$aJournal Article
000632041 520__ $$aAll ferromagnetic Fe-based bulk metallic glasses show the Invar effect. It is a magnetic effect that reduces the coefficient of thermal expansion and comes in two forms, a step-type and a peak-type effect. Here, we study the atomic arrangement of an (Fe$_{71.2}$B$_{24}$Y$_{4.8}$)$_{96}$Nb$_4$ bulk metallic glass as a function of temperature and across more than six orders of magnitude in length scale. Combining various synchrotron-based X-ray scattering techniques we show that the Invar effect originates at the atomic scale within the Fe–Fe network. We find no signs of increased spatial correlations due to the ferromagnetic interactions. This shows that no structural rearrangement occurs at the Curie temperature and that the Invar effect is purely of energetic nature. We conclude that the Invar effect has a fundamental base that results from the magnetic interactions of Fe–Fe bonds. Based on this, we provide a model for the magnetic interactions that create the Invar effect in amorphous materials.
000632041 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000632041 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000632041 536__ $$0G:(DE-H253)I-20210311-EC$$aFS-Proposal: I-20210311 EC (I-20210311-EC)$$cI-20210311-EC$$x2
000632041 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000632041 693__ $$0EXP:(DE-H253)P-P62-20221101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P62-20221101$$aPETRA III$$fPETRA Beamline P62$$x0
000632041 7001_ $$0P:(DE-H253)PIP1011197$$aStoica, Mihai$$b1
000632041 7001_ $$aWright, Jonathan$$b2
000632041 7001_ $$0P:(DE-H253)PIP1018539$$aSun, Xiao$$b3
000632041 7001_ $$0P:(DE-H253)PIP1100442$$aSchäublin, Robin E.$$b4
000632041 7001_ $$0P:(DE-H253)PIP1098230$$aLöffler, Jörg F.$$b5$$eCorresponding author
000632041 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2025.180013$$gVol. 1022, p. 180013 -$$p180013$$tJournal of alloys and compounds$$v1022$$x0925-8388$$y2025
000632041 8564_ $$uhttps://bib-pubdb1.desy.de/record/632041/files/2025JAlCom_Firlus.pdf$$yOpenAccess
000632041 8564_ $$uhttps://bib-pubdb1.desy.de/record/632041/files/2025JAlCom_Firlus.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000632041 909CO $$ooai:bib-pubdb1.desy.de:632041$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000632041 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092410$$aExternal Institute$$b0$$kExtern
000632041 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011197$$aExternal Institute$$b1$$kExtern
000632041 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018539$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000632041 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1018539$$aExternal Institute$$b3$$kExtern
000632041 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100442$$aExternal Institute$$b4$$kExtern
000632041 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098230$$aExternal Institute$$b5$$kExtern
000632041 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000632041 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000632041 9141_ $$y2025
000632041 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000632041 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000632041 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ ALLOY COMPD : 2022$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000632041 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2022$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000632041 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000632041 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000632041 9201_ $$0I:(DE-H253)FS-PET-S-20190712$$kFS-PET-S$$lExperimentebetreuung PETRA III$$x1
000632041 980__ $$ajournal
000632041 980__ $$aVDB
000632041 980__ $$aUNRESTRICTED
000632041 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000632041 980__ $$aI:(DE-H253)FS-PET-S-20190712
000632041 9801_ $$aFullTexts