000631516 001__ 631516
000631516 005__ 20250723110012.0
000631516 0247_ $$2doi$$a10.1016/j.molcel.2024.11.038
000631516 0247_ $$2ISSN$$a1097-2765
000631516 0247_ $$2ISSN$$a1097-4164
000631516 0247_ $$2altmetric$$aaltmetric:172465307
000631516 0247_ $$2pmid$$apmid:39729993
000631516 0247_ $$2openalex$$aopenalex:W4405801195
000631516 037__ $$aPUBDB-2025-02028
000631516 041__ $$aEnglish
000631516 082__ $$a610
000631516 1001_ $$0P:(DE-HGF)0$$aHoffmann, Patrick C.$$b0
000631516 245__ $$aNuclear pore permeability and fluid flow are modulated by its dilation state
000631516 260__ $$a[Cambridge, Mass.]$$bCell Press$$c2025
000631516 3367_ $$2DRIVER$$aarticle
000631516 3367_ $$2DataCite$$aOutput Types/Journal article
000631516 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750934621_1080016
000631516 3367_ $$2BibTeX$$aARTICLE
000631516 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000631516 3367_ $$00$$2EndNote$$aJournal Article
000631516 520__ $$aChanging environmental conditions necessitate an immediate cellular adaptation to ensure survival. Dictyostelium discoideum, a bacteriovore slime mold present in the soil of most terrestrial ecosystems, is known for its ability to tolerate drastic changes in osmolarity. How the cells cope with the resulting mechanical stress remains understudied. Here we show that D. discoideum has extraordinarily elaborate and resilient nuclear pores that serve as conduits for massive fluid exchange between cytosol and nucleus. We capitalize on the unique properties of D. discoideum cells to quantify flow across the nuclear envelope that is necessitated by changing nuclear size in response to osmotic stress. Based on mathematical concepts adapted from hydrodynamics, we conceptualize this phenomenon as porous flow across nuclear pores. This type of fluid flow is distinct from the canonically characterized modes of nucleocytoplasmic transport, i.e. passive diffusion and active nuclear transport, because of its dependence on pressure. Our insights are relevant in any biological condition that necessitates rapid nuclear size changes, which includes metastasizing cancer cells squeezing through constrictions, migrating cells and differentiating tissues.
000631516 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000631516 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000631516 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000631516 7001_ $$0P:(DE-HGF)0$$aKim, Hyuntae$$b1
000631516 7001_ $$0P:(DE-HGF)0$$aObarska-Kosinska, Agnieszka$$b2
000631516 7001_ $$0P:(DE-HGF)0$$aKreysing, Jan Philipp$$b3
000631516 7001_ $$0P:(DE-HGF)0$$aAndino-Frydman, Eli$$b4
000631516 7001_ $$0P:(DE-HGF)0$$aCruz-León, Sergio$$b5
000631516 7001_ $$0P:(DE-HGF)0$$aMargiotta, Erica$$b6
000631516 7001_ $$0P:(DE-H253)PIP1092915$$aCernikova, Lenka$$b7
000631516 7001_ $$0P:(DE-H253)PIP1081584$$aKosinski, Jan$$b8
000631516 7001_ $$0P:(DE-HGF)0$$aTuroňová, Beata$$b9
000631516 7001_ $$0P:(DE-HGF)0$$aHummer, Gerhard$$b10$$eCorresponding author
000631516 7001_ $$0P:(DE-HGF)0$$aBeck, Martin$$b11$$eCorresponding author
000631516 773__ $$0PERI:(DE-600)2001948-8$$a10.1016/j.molcel.2024.11.038$$gVol. 85, no. 3, p. 537 - 554.e11$$n3$$p537 - 554.e11$$tMolecular cell$$v85$$x1097-2765$$y2025
000631516 7870_ $$0PUBDB-2024-08043$$aHoffmann, Patrick C. et.al.$$d2024$$iIsParent$$r$$tNuclear pores as conduits for fluid flow during osmotic stress
000631516 8564_ $$uhttps://bib-pubdb1.desy.de/record/631516/files/1-s2.0-S1097276524009936-main.pdf$$yRestricted
000631516 8564_ $$uhttps://bib-pubdb1.desy.de/record/631516/files/1-s2.0-S1097276524009936-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000631516 909CO $$ooai:bib-pubdb1.desy.de:631516$$pVDB
000631516 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1092915$$aCentre for Structural Systems Biology$$b7$$kCSSB
000631516 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092915$$aExternal Institute$$b7$$kExtern
000631516 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1081584$$aCentre for Structural Systems Biology$$b8$$kCSSB
000631516 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000631516 9141_ $$y2025
000631516 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL CELL : 2022$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000631516 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bMOL CELL : 2022$$d2025-01-06
000631516 9201_ $$0I:(DE-H253)CSSB-EMBL-JK-20210701$$kCSSB-EMBL-JK$$lCSSB-EMBL-JK$$x0
000631516 980__ $$ajournal
000631516 980__ $$aVDB
000631516 980__ $$aI:(DE-H253)CSSB-EMBL-JK-20210701
000631516 980__ $$aUNRESTRICTED