001     626275
005     20250625130751.0
024 7 _ |a 10.1039/D4SC04866K
|2 doi
024 7 _ |a 2041-6520
|2 ISSN
024 7 _ |a 2041-6539
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01354
|2 datacite_doi
024 7 _ |a altmetric:167967770
|2 altmetric
024 7 _ |a pmid:39328189
|2 pmid
024 7 _ |a WOS:001319339700001
|2 WOS
037 _ _ |a PUBDB-2025-01354
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Banoo, Maqsuma
|b 0
245 _ _ |a A surface reconstruction route for increasingly improved photocatalytic H$_2$O$_2$ production using Sr$_2$Bi$_3$Ta$_2$O$_{11}$Cl
260 _ _ |a Cambridge
|c 2024
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745320972_2744298
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photocatalytic hydrogen peroxide (H$_2$O$_2$) generation is attractive for the chemical industry and energy production. However, photocatalysts generally deteriorate significantly during use to limit their application. Here we present highly active Sr$_2$Bi$_3$Ta$_2$O$_{11}$Cl single-crystal nanoplates for conversion of O$_2$ to H$_2$O$_2$ using ambient air with a production rate of ∼3 mmol h$^{−1}$ g$^{−1}$ (maximum 17.5% photon conversion). Importantly, Sr$_2$Bi$_3$Ta$_2$O$_{11}$Cl is not only stable during 30 days of H$_2$O$_2$ production but also gets consistently activated to increase the H$_2$O$_2$ yield by >244%, unlike any other catalyst for H$_2$O$_2$ production. Multi-pronged characterization confirms that the synergistic increase in activity originates from in situ surface reconstruction by oxygen-deficient vacancy associate formation that improves (i) surface oxygen adsorption, (ii) sunlight harvesting, and (iii) charge-transfer from the low-valent metal atoms surrounding oxygen vacancies to reactants. The study establishes the prospects of rational defect engineering for realizing non-degrading photocatalysts for realistic H$_2$O$_2$ production .
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a INDIA-DESY - INDIA-DESY Collaboration (2020_Join2-INDIA-DESY)
|0 G:(DE-HGF)2020_Join2-INDIA-DESY
|c 2020_Join2-INDIA-DESY
|x 1
536 _ _ |a FS-Proposal: I-20211387 (I-20211387)
|0 G:(DE-H253)I-20211387
|c I-20211387
|x 2
536 _ _ |a FS-Proposal: I-20220874 (I-20220874)
|0 G:(DE-H253)I-20220874
|c I-20220874
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P65
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P65-20150101
|6 EXP:(DE-H253)P-P65-20150101
|x 0
700 1 _ |a Sah, Arjun Kumar
|b 1
700 1 _ |a Roy, Raj Sekhar
|0 P:(DE-H253)PIP1099185
|b 2
700 1 _ |a Kaur, Komalpreet
|0 P:(DE-H253)PIP1104551
|b 3
700 1 _ |a Kommula, Bramhaiah
|0 0000-0002-8302-4109
|b 4
700 1 _ |a Sanyal, Dirtha
|0 0000-0003-2490-3610
|b 5
700 1 _ |a Gautam, Ujjal
|0 P:(DE-H253)PIP1085398
|b 6
|e Corresponding author
773 _ _ |a 10.1039/D4SC04866K
|g Vol. 15, no. 41, p. 17049 - 17057
|0 PERI:(DE-600)2559110-1
|n 41
|p 17049 - 17057
|t Chemical science
|v 15
|y 2024
|x 2041-6520
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/626275/files/d4sc04866k.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/626275/files/d4sc04866k.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:626275
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1099185
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1104551
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1085398
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM SCI : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-23T09:28:57Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-23T09:28:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-23T09:28:57Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM SCI : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21