001     622603
005     20250625125430.0
024 7 _ |a 10.1364/OL.503820
|2 doi
024 7 _ |a 0146-9592
|2 ISSN
024 7 _ |a 1071-2763
|2 ISSN
024 7 _ |a 1071-8842
|2 ISSN
024 7 _ |a 1539-4794
|2 ISSN
024 7 _ |a 38748146
|2 pmid
024 7 _ |a WOS:001238866100005
|2 WOS
037 _ _ |a PUBDB-2025-00416
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Mbonde, Hamidu
|0 P:(DE-H253)PIP1099974
|b 0
|e Corresponding author
245 _ _ |a Octave-spanning supercontinuum generation in a CMOS-compatible thin Si$_3$N$_4$ waveguide coated with highly nonlinear TeO$_2$
260 _ _ |a Washington, DC
|c 2024
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737968688_1795183
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Supercontinuum generation (SCG) is an important nonlinear optical process enabling broadband light sources for many applications, for which silicon nitride (Si3N4) has emerged as a leading on-chip platform. To achieve suitable group velocity dispersion and high confinement for broadband SCG the Si$_3$N$_4$ waveguide layer used is typically thick (>∼700 nm), which can lead to high stress and cracks unless specialized processing steps are used. Here, we report on efficient octave-spanning SCG in a thinner moderate-confinement 400-nm Si$_3$N$_4$ platform using a highly nonlinear tellurium oxide (TeO$_2$) coating. An octave supercontinuum spanning from 0.89 to 2.11 µm is achieved at a low peak power of 258 W using a 100-fs laser centered at 1565 nm. Our numerical simulations agree well with the experimental results giving a nonlinear parameter of 2.5 ± 0.5 W$^{−1}$m$^{−1}$, an increase by a factor of 2.5, when coating the Si$_3$N$_4$ waveguide with a TeO$_2$ film. This work demonstrates highly efficient SCG via effective dispersion engineering and an enhanced nonlinearity in CMOS-compatible hybrid TeO$_2$–Si$_3$N$_4$ waveguides and a promising route to monolithically integrated nonlinear, linear, and active functionalities on a single silicon photonic chip.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a femto-iCOMB - Integrated femtosecond laser based frequency comb and photonic microwave oscillator (101159229)
|0 G:(EU-Grant)101159229
|c 101159229
|f HORIZON-EIC-2023-TRANSITION-01
|x 1
536 _ _ |a FEMTOCHIP - FEMTOSECOND LASER ON A CHIP (965124)
|0 G:(EU-Grant)965124
|c 965124
|f H2020-FETOPEN-2018-2019-2020-01
|x 2
542 _ _ |i 2024-05-10
|2 Crossref
|u https://doi.org/10.1364/OA_License_v2#VOR
542 _ _ |i 2024-05-10
|2 Crossref
|u https://opg.optica.org/policies/opg-tdm-policy.json
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-H253)CFEL-Exp-20150101
|5 EXP:(DE-H253)CFEL-Exp-20150101
|e Experiments at CFEL
|x 0
700 1 _ |a Singh, Neetesh Kumar
|0 P:(DE-H253)PIP1086837
|b 1
700 1 _ |a Segat Frare, Bruno L.
|0 0000-0001-6670-0403
|b 2
700 1 _ |a Sinobad, Milan
|0 P:(DE-H253)PIP1096756
|b 3
700 1 _ |a Ahmadi, Pooya Torab
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hashemi, Batoul
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bonneville, Dawson B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mascher, Peter
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kärtner, Franz X.
|0 P:(DE-H253)PIP1013198
|b 8
700 1 _ |a Bradley, Jonathan D. B.
|0 0000-0003-0500-3537
|b 9
773 1 8 |a 10.1364/ol.503820
|b Optica Publishing Group
|d 2024-05-10
|n 10
|p 2725
|3 journal-article
|2 Crossref
|t Optics Letters
|v 49
|y 2024
|x 0146-9592
773 _ _ |a 10.1364/OL.503820
|g Vol. 49, no. 10, p. 2725 -
|0 PERI:(DE-600)1479014-2
|n 10
|p 2725
|t Optics letters
|v 49
|y 2024
|x 0146-9592
856 4 _ |u https://bib-pubdb1.desy.de/record/622603/files/ol-49-10-2725.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/622603/files/ol-49-10-2725.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:622603
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1099974
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1086837
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1086837
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 3
|6 P:(DE-H253)PIP1096756
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1096756
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1013198
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 8
|6 P:(DE-H253)PIP1013198
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1013198
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPT LETT : 2022
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
920 1 _ |0 I:(DE-H253)FS-CFEL-2-20120731
|k FS-CFEL-2
|l Ultrafast Lasers & X-rays Division
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-CFEL-2-20120731
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1364/PRJ.445304
|9 -- missing cx lookup --
|1 Lafforgue
|p A43 -
|2 Crossref
|t Photonics Res.
|v 10
|y 2022
999 C 5 |a 10.1103/RevModPhys.78.1135
|9 -- missing cx lookup --
|1 Dudley
|p 1135 -
|2 Crossref
|t Rev. Mod. Phys.
|v 78
|y 2006
999 C 5 |a 10.1126/science.288.5466.635
|9 -- missing cx lookup --
|1 Jones
|p 635 -
|2 Crossref
|t Science
|v 288
|y 2000
999 C 5 |a 10.1364/OL.39.001046
|9 -- missing cx lookup --
|1 Oh
|p 1046 -
|2 Crossref
|t Opt. Lett.
|v 39
|y 2014
999 C 5 |a 10.1515/nanoph-2013-0020
|9 -- missing cx lookup --
|1 Zhang
|p 247 -
|2 Crossref
|t Nanophotonics
|v 3
|y 2014
999 C 5 |a 10.1364/OL.32.000391
|9 -- missing cx lookup --
|1 Yin
|p 391 -
|2 Crossref
|t Opt. Lett.
|v 32
|y 2007
999 C 5 |a 10.1038/lsa.2017.131
|9 -- missing cx lookup --
|1 Singh
|p 17131 -
|2 Crossref
|t Light: Sci. Appl.
|v 7
|y 2018
999 C 5 |a 10.1364/OL.396950
|9 -- missing cx lookup --
|1 Lamee
|p 4192 -
|2 Crossref
|t Opt. Lett.
|v 45
|y 2020
999 C 5 |a 10.1038/s41598-022-13734-9
|9 -- missing cx lookup --
|1 Cao
|p 9487 -
|2 Crossref
|t Sci. Rep.
|v 12
|y 2022
999 C 5 |a 10.1364/OL.37.001685
|9 -- missing cx lookup --
|1 Halir
|p 1685 -
|2 Crossref
|t Opt. Lett.
|v 37
|y 2012
999 C 5 |a 10.1364/OL.40.005117
|9 -- missing cx lookup --
|1 Johnson
|p 5117 -
|2 Crossref
|t Opt. Lett.
|v 40
|y 2015
999 C 5 |a 10.1364/OE.25.001542
|9 -- missing cx lookup --
|1 Porcel
|p 1542 -
|2 Crossref
|t Opt. Express
|v 25
|y 2017
999 C 5 |a 10.1364/OL.42.002314
|9 -- missing cx lookup --
|1 Carlson
|p 2314 -
|2 Crossref
|t Opt. Lett.
|v 42
|y 2017
999 C 5 |a 10.1364/OL.43.004627
|9 -- missing cx lookup --
|1 Okawachi
|p 4627 -
|2 Crossref
|t Opt. Lett.
|v 43
|y 2018
999 C 5 |a 10.1038/s41566-018-0144-1
|9 -- missing cx lookup --
|1 Guo
|p 330 -
|2 Crossref
|t Nat. Photonics
|v 12
|y 2018
999 C 5 |a 10.1364/OE.449575
|9 -- missing cx lookup --
|1 Ishizawa
|p 5265 -
|2 Crossref
|t Opt. Express
|v 30
|y 2022
999 C 5 |a 10.1364/OE.450987
|9 -- missing cx lookup --
|1 Rebolledo-Salgado
|p 8641 -
|2 Crossref
|t Opt. Express
|v 30
|y 2022
999 C 5 |a 10.1364/OE.430197
|9 -- missing cx lookup --
|1 Tagkoudi
|p 21348 -
|2 Crossref
|t Opt. Express
|v 29
|y 2021
999 C 5 |a 10.1109/JLT.2020.2985262
|9 -- missing cx lookup --
|1 Fang
|p 3431 -
|2 Crossref
|t J. Lightwave Technol.
|v 38
|y 2020
999 C 5 |a 10.1002/adpr.202200296
|9 -- missing cx lookup --
|1 Zia
|p 2200296 -
|2 Crossref
|t Adv. Photonics Res.
|v 4
|y 2023
999 C 5 |a 10.1364/OE.16.012987
|9 -- missing cx lookup --
|1 Ikeda
|p 12987 -
|2 Crossref
|t Opt. Express
|v 16
|y 2008
999 C 5 |a 10.1364/OPTICA.3.000020
|9 -- missing cx lookup --
|1 Pfeiffer
|p 20 -
|2 Crossref
|t Optica
|v 3
|y 2016
999 C 5 |a 10.1364/OE.390171
|9 -- missing cx lookup --
|1 Wu
|p 17708 -
|2 Crossref
|t Opt. Express
|v 28
|y 2020
999 C 5 |a 10.1038/nphoton.2009.259
|9 -- missing cx lookup --
|1 Levy
|p 37 -
|2 Crossref
|t Nat. Photonics
|v 4
|y 2010
999 C 5 |a 10.1364/OE.456834
|9 -- missing cx lookup --
|1 Grootes
|p 16725 -
|2 Crossref
|t Opt. Express
|v 30
|y 2022
999 C 5 |a 10.1063/1.5136270
|9 -- missing cx lookup --
|1 Frigg
|p 011302 -
|2 Crossref
|t APL Photonics
|v 5
|y 2020
999 C 5 |1 Rivera
|y 2017
|2 Crossref
|o Rivera 2017
999 C 5 |a 10.1109/JPHOT.2020.2973297
|9 -- missing cx lookup --
|1 Mbonde
|p 2200210 -
|2 Crossref
|t IEEE Photonics J.
|v 12
|y 2020
999 C 5 |a 10.1364/OE.17.017645
|9 -- missing cx lookup --
|1 Madden
|p 17645 -
|2 Crossref
|t Opt. Express
|v 17
|y 2009
999 C 5 |a 10.1364/OE.23.000747
|9 -- missing cx lookup --
|1 Vu
|p 747 -
|2 Crossref
|t Opt. Express
|v 23
|y 2015
999 C 5 |a 10.1364/OE.18.019192
|9 -- missing cx lookup --
|1 Vu
|p 19192 -
|2 Crossref
|t Opt. Express
|v 18
|y 2010
999 C 5 |a 10.1364/PRJ.393912
|9 -- missing cx lookup --
|1 Frankis
|p 1022 -
|2 Crossref
|t Photonics Res.
|v 8
|y 2020
999 C 5 |a 10.1364/OL.44.005788
|9 -- missing cx lookup --
|1 Kiani
|p 5788 -
|2 Crossref
|t Opt. Lett.
|v 44
|y 2019
999 C 5 |a 10.1002/lpor.202100348
|9 -- missing cx lookup --
|1 Miarabbas Kiani
|p 2100348 -
|2 Crossref
|t Laser Photonics Rev.
|v 16
|y 2022
999 C 5 |a 10.1364/PRJ.400057
|9 -- missing cx lookup --
|1 Singh
|p 1904 -
|2 Crossref
|t Photonics Res.
|v 8
|y 2020
999 C 5 |a 10.3390/s17092088
|9 -- missing cx lookup --
|1 Muñoz
|p 2088 -
|2 Crossref
|t Sensors
|v 17
|y 2017
999 C 5 |a 10.1109/JPROC.2018.2860994
|9 -- missing cx lookup --
|1 Sacher
|p 2232 -
|2 Crossref
|t Proc. IEEE
|v 106
|y 2018
999 C 5 |a 10.1364/OE.27.012529
|9 -- missing cx lookup --
|1 Frankis
|p 12529 -
|2 Crossref
|t Opt. Express
|v 27
|y 2019
999 C 5 |a 10.1111/j.1151-2916.1993.tb03970.x
|9 -- missing cx lookup --
|1 Kim
|p 2486 -
|2 Crossref
|t J. Am. Ceram. Soc.
|v 76
|y 1993
999 C 5 |a 10.1038/s41467-022-34100-3
|9 -- missing cx lookup --
|1 Lin
|p 6362 -
|2 Crossref
|t Nat. Commun.
|v 13
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21