000622603 001__ 622603
000622603 005__ 20250625125430.0
000622603 0247_ $$2doi$$a10.1364/OL.503820
000622603 0247_ $$2ISSN$$a0146-9592
000622603 0247_ $$2ISSN$$a1071-2763
000622603 0247_ $$2ISSN$$a1071-8842
000622603 0247_ $$2ISSN$$a1539-4794
000622603 0247_ $$2pmid$$a38748146
000622603 0247_ $$2WOS$$aWOS:001238866100005
000622603 037__ $$aPUBDB-2025-00416
000622603 041__ $$aEnglish
000622603 082__ $$a530
000622603 1001_ $$0P:(DE-H253)PIP1099974$$aMbonde, Hamidu$$b0$$eCorresponding author
000622603 245__ $$aOctave-spanning supercontinuum generation in a CMOS-compatible thin Si$_3$N$_4$ waveguide coated with highly nonlinear TeO$_2$
000622603 260__ $$aWashington, DC$$bSoc.$$c2024
000622603 3367_ $$2DRIVER$$aarticle
000622603 3367_ $$2DataCite$$aOutput Types/Journal article
000622603 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737968688_1795183
000622603 3367_ $$2BibTeX$$aARTICLE
000622603 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622603 3367_ $$00$$2EndNote$$aJournal Article
000622603 500__ $$aWaiting for fulltext 
000622603 520__ $$aSupercontinuum generation (SCG) is an important nonlinear optical process enabling broadband light sources for many applications, for which silicon nitride (Si3N4) has emerged as a leading on-chip platform. To achieve suitable group velocity dispersion and high confinement for broadband SCG the Si$_3$N$_4$ waveguide layer used is typically thick (>∼700 nm), which can lead to high stress and cracks unless specialized processing steps are used. Here, we report on efficient octave-spanning SCG in a thinner moderate-confinement 400-nm Si$_3$N$_4$ platform using a highly nonlinear tellurium oxide (TeO$_2$) coating. An octave supercontinuum spanning from 0.89 to 2.11 µm is achieved at a low peak power of 258 W using a 100-fs laser centered at 1565 nm. Our numerical simulations agree well with the experimental results giving a nonlinear parameter of 2.5 ± 0.5 W$^{−1}$m$^{−1}$, an increase by a factor of 2.5, when coating the Si$_3$N$_4$ waveguide with a TeO$_2$ film. This work demonstrates highly efficient SCG via effective dispersion engineering and an enhanced nonlinearity in CMOS-compatible hybrid TeO$_2$–Si$_3$N$_4$ waveguides and a promising route to monolithically integrated nonlinear, linear, and active functionalities on a single silicon photonic chip.
000622603 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000622603 536__ $$0G:(EU-Grant)101159229$$afemto-iCOMB - Integrated femtosecond laser based frequency comb and photonic microwave oscillator (101159229)$$c101159229$$fHORIZON-EIC-2023-TRANSITION-01$$x1
000622603 536__ $$0G:(EU-Grant)965124$$aFEMTOCHIP - FEMTOSECOND LASER ON A CHIP (965124)$$c965124$$fH2020-FETOPEN-2018-2019-2020-01$$x2
000622603 542__ $$2Crossref$$i2024-05-10$$uhttps://doi.org/10.1364/OA_License_v2#VOR
000622603 542__ $$2Crossref$$i2024-05-10$$uhttps://opg.optica.org/policies/opg-tdm-policy.json
000622603 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622603 693__ $$0EXP:(DE-H253)CFEL-Exp-20150101$$5EXP:(DE-H253)CFEL-Exp-20150101$$eExperiments at CFEL$$x0
000622603 7001_ $$0P:(DE-H253)PIP1086837$$aSingh, Neetesh Kumar$$b1
000622603 7001_ $$00000-0001-6670-0403$$aSegat Frare, Bruno L.$$b2
000622603 7001_ $$0P:(DE-H253)PIP1096756$$aSinobad, Milan$$b3
000622603 7001_ $$0P:(DE-HGF)0$$aAhmadi, Pooya Torab$$b4
000622603 7001_ $$0P:(DE-HGF)0$$aHashemi, Batoul$$b5
000622603 7001_ $$0P:(DE-HGF)0$$aBonneville, Dawson B.$$b6
000622603 7001_ $$0P:(DE-HGF)0$$aMascher, Peter$$b7
000622603 7001_ $$0P:(DE-H253)PIP1013198$$aKärtner, Franz X.$$b8
000622603 7001_ $$00000-0003-0500-3537$$aBradley, Jonathan D. B.$$b9
000622603 77318 $$2Crossref$$3journal-article$$a10.1364/ol.503820$$bOptica Publishing Group$$d2024-05-10$$n10$$p2725$$tOptics Letters$$v49$$x0146-9592$$y2024
000622603 773__ $$0PERI:(DE-600)1479014-2$$a10.1364/OL.503820$$gVol. 49, no. 10, p. 2725 -$$n10$$p2725$$tOptics letters$$v49$$x0146-9592$$y2024
000622603 8564_ $$uhttps://bib-pubdb1.desy.de/record/622603/files/ol-49-10-2725.pdf$$yRestricted
000622603 8564_ $$uhttps://bib-pubdb1.desy.de/record/622603/files/ol-49-10-2725.pdf?subformat=pdfa$$xpdfa$$yRestricted
000622603 909CO $$ooai:bib-pubdb1.desy.de:622603$$pec_fundedresources$$pVDB$$popenaire
000622603 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099974$$aExternal Institute$$b0$$kExtern
000622603 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086837$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000622603 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1086837$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000622603 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1096756$$aCentre for Free-Electron Laser Science$$b3$$kCFEL
000622603 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096756$$aExternal Institute$$b3$$kExtern
000622603 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013198$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000622603 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1013198$$aCentre for Free-Electron Laser Science$$b8$$kCFEL
000622603 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1013198$$aEuropean XFEL$$b8$$kXFEL.EU
000622603 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000622603 9141_ $$y2024
000622603 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT LETT : 2022$$d2024-12-28
000622603 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
000622603 9201_ $$0I:(DE-H253)FS-CFEL-2-20120731$$kFS-CFEL-2$$lUltrafast Lasers & X-rays Division$$x0
000622603 980__ $$ajournal
000622603 980__ $$aVDB
000622603 980__ $$aI:(DE-H253)FS-CFEL-2-20120731
000622603 980__ $$aUNRESTRICTED
000622603 999C5 $$1Lafforgue$$2Crossref$$9-- missing cx lookup --$$a10.1364/PRJ.445304$$pA43 -$$tPhotonics Res.$$v10$$y2022
000622603 999C5 $$1Dudley$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.78.1135$$p1135 -$$tRev. Mod. Phys.$$v78$$y2006
000622603 999C5 $$1Jones$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.288.5466.635$$p635 -$$tScience$$v288$$y2000
000622603 999C5 $$1Oh$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.39.001046$$p1046 -$$tOpt. Lett.$$v39$$y2014
000622603 999C5 $$1Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1515/nanoph-2013-0020$$p247 -$$tNanophotonics$$v3$$y2014
000622603 999C5 $$1Yin$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.32.000391$$p391 -$$tOpt. Lett.$$v32$$y2007
000622603 999C5 $$1Singh$$2Crossref$$9-- missing cx lookup --$$a10.1038/lsa.2017.131$$p17131 -$$tLight: Sci. Appl.$$v7$$y2018
000622603 999C5 $$1Lamee$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.396950$$p4192 -$$tOpt. Lett.$$v45$$y2020
000622603 999C5 $$1Cao$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-022-13734-9$$p9487 -$$tSci. Rep.$$v12$$y2022
000622603 999C5 $$1Halir$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.37.001685$$p1685 -$$tOpt. Lett.$$v37$$y2012
000622603 999C5 $$1Johnson$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.40.005117$$p5117 -$$tOpt. Lett.$$v40$$y2015
000622603 999C5 $$1Porcel$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.25.001542$$p1542 -$$tOpt. Express$$v25$$y2017
000622603 999C5 $$1Carlson$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.42.002314$$p2314 -$$tOpt. Lett.$$v42$$y2017
000622603 999C5 $$1Okawachi$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.43.004627$$p4627 -$$tOpt. Lett.$$v43$$y2018
000622603 999C5 $$1Guo$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-018-0144-1$$p330 -$$tNat. Photonics$$v12$$y2018
000622603 999C5 $$1Ishizawa$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.449575$$p5265 -$$tOpt. Express$$v30$$y2022
000622603 999C5 $$1Rebolledo-Salgado$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.450987$$p8641 -$$tOpt. Express$$v30$$y2022
000622603 999C5 $$1Tagkoudi$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.430197$$p21348 -$$tOpt. Express$$v29$$y2021
000622603 999C5 $$1Fang$$2Crossref$$9-- missing cx lookup --$$a10.1109/JLT.2020.2985262$$p3431 -$$tJ. Lightwave Technol.$$v38$$y2020
000622603 999C5 $$1Zia$$2Crossref$$9-- missing cx lookup --$$a10.1002/adpr.202200296$$p2200296 -$$tAdv. Photonics Res.$$v4$$y2023
000622603 999C5 $$1Ikeda$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.16.012987$$p12987 -$$tOpt. Express$$v16$$y2008
000622603 999C5 $$1Pfeiffer$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.3.000020$$p20 -$$tOptica$$v3$$y2016
000622603 999C5 $$1Wu$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.390171$$p17708 -$$tOpt. Express$$v28$$y2020
000622603 999C5 $$1Levy$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2009.259$$p37 -$$tNat. Photonics$$v4$$y2010
000622603 999C5 $$1Grootes$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.456834$$p16725 -$$tOpt. Express$$v30$$y2022
000622603 999C5 $$1Frigg$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5136270$$p011302 -$$tAPL Photonics$$v5$$y2020
000622603 999C5 $$1Rivera$$2Crossref$$oRivera 2017$$y2017
000622603 999C5 $$1Mbonde$$2Crossref$$9-- missing cx lookup --$$a10.1109/JPHOT.2020.2973297$$p2200210 -$$tIEEE Photonics J.$$v12$$y2020
000622603 999C5 $$1Madden$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.17.017645$$p17645 -$$tOpt. Express$$v17$$y2009
000622603 999C5 $$1Vu$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.23.000747$$p747 -$$tOpt. Express$$v23$$y2015
000622603 999C5 $$1Vu$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.18.019192$$p19192 -$$tOpt. Express$$v18$$y2010
000622603 999C5 $$1Frankis$$2Crossref$$9-- missing cx lookup --$$a10.1364/PRJ.393912$$p1022 -$$tPhotonics Res.$$v8$$y2020
000622603 999C5 $$1Kiani$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.44.005788$$p5788 -$$tOpt. Lett.$$v44$$y2019
000622603 999C5 $$1Miarabbas Kiani$$2Crossref$$9-- missing cx lookup --$$a10.1002/lpor.202100348$$p2100348 -$$tLaser Photonics Rev.$$v16$$y2022
000622603 999C5 $$1Singh$$2Crossref$$9-- missing cx lookup --$$a10.1364/PRJ.400057$$p1904 -$$tPhotonics Res.$$v8$$y2020
000622603 999C5 $$1Muñoz$$2Crossref$$9-- missing cx lookup --$$a10.3390/s17092088$$p2088 -$$tSensors$$v17$$y2017
000622603 999C5 $$1Sacher$$2Crossref$$9-- missing cx lookup --$$a10.1109/JPROC.2018.2860994$$p2232 -$$tProc. IEEE$$v106$$y2018
000622603 999C5 $$1Frankis$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.27.012529$$p12529 -$$tOpt. Express$$v27$$y2019
000622603 999C5 $$1Kim$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1151-2916.1993.tb03970.x$$p2486 -$$tJ. Am. Ceram. Soc.$$v76$$y1993
000622603 999C5 $$1Lin$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-34100-3$$p6362 -$$tNat. Commun.$$v13$$y2022