000622281 001__ 622281
000622281 005__ 20250715171528.0
000622281 0247_ $$2doi$$a10.1063/5.0239203
000622281 0247_ $$2ISSN$$a0021-8979
000622281 0247_ $$2ISSN$$a0148-6349
000622281 0247_ $$2ISSN$$a1089-7550
000622281 0247_ $$2ISSN$$a2163-5102
000622281 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-00319
000622281 0247_ $$2WOS$$aWOS:001363273600012
000622281 0247_ $$2openalex$$aopenalex:W4404637738
000622281 037__ $$aPUBDB-2025-00319
000622281 041__ $$aEnglish
000622281 082__ $$a530
000622281 1001_ $$0P:(DE-H253)PIP1089019$$aStrenzke, Vincent$$b0$$eCorresponding author
000622281 245__ $$aChallenges and solutions in RF sputtering of superconducting Nb for nanostructuring processes
000622281 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2024
000622281 3367_ $$2DRIVER$$aarticle
000622281 3367_ $$2DataCite$$aOutput Types/Journal article
000622281 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738063757_2500899
000622281 3367_ $$2BibTeX$$aARTICLE
000622281 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000622281 3367_ $$00$$2EndNote$$aJournal Article
000622281 500__ $$aDeutsche Forschungsgemeinschaft (DFG) with Grant No. BL-487/14-1
000622281 520__ $$aThe growing interest in hybrid devices that combine two-dimensional materials with a superconductor presents new challenges in material deposition. In this study, we demonstrate that achieving excellent superconducting properties by RF (radio frequency) sputtering does not require access to a high-end system but rather depends on the precise control of sputtering parameters and the selection of an appropriate lithographic process. We highlight the challenges and present practical solutions to deposit high-quality niobium thin films for the lithographic production of superconducting hybrid nanostructures. The influence of various deposition parameters, such as power, argon pressure, and film thickness, on the resultant superconducting characteristics can already be deduced at liquid nitrogen temperatures. Furthermore, niobium films tend to degrade when a PMMA [poly(methylmethacrylate)] resist is employed in the fabrication of superconducting nanostructures. We propose alternative and simple strategies to address this issue, which ultimately result in the restoration of the thin-film quality.
000622281 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000622281 536__ $$0G:(DE-Ds200)BMBF-05K22GUD$$a05K22GUD - Verbundprojekt 05K2022 - NOVALIS: Innovative Beschleunigertechnologien für effiziente Strahlungsquellen. Teilprojekt 1. (BMBF-05K22GUD)$$cBMBF-05K22GUD$$f05K22GUD$$x1
000622281 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000622281 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000622281 7001_ $$aWeber, Annika$$b1
000622281 7001_ $$aHeydolph, Peer$$b2
000622281 7001_ $$aMoch, Isa$$b3
000622281 7001_ $$aGonzález Díaz-Palacio, Isabel$$b4
000622281 7001_ $$aHillert, Wolfgang$$b5
000622281 7001_ $$aZierold, Robert$$b6
000622281 7001_ $$aTiemann, Lars$$b7
000622281 7001_ $$0P:(DE-H253)PIP1027258$$aBlick, Robert$$b8
000622281 77318 $$2Crossref$$3journal-article$$a10.1063/5.0239203$$bAIP Publishing$$d2024-11-22$$n20$$tJournal of Applied Physics$$v136$$x0021-8979$$y2024
000622281 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/5.0239203$$gVol. 136, no. 20, p. 205301$$n20$$p205301$$tJournal of applied physics$$v136$$x0021-8979$$y2024
000622281 8564_ $$uhttps://bib-pubdb1.desy.de/record/622281/files/205301_1_5.0239203.pdf$$yOpenAccess
000622281 8564_ $$uhttps://bib-pubdb1.desy.de/record/622281/files/205301_1_5.0239203.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000622281 909CO $$ooai:bib-pubdb1.desy.de:622281$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000622281 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089019$$aExternal Institute$$b0$$kExtern
000622281 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027258$$aExternal Institute$$b8$$kExtern
000622281 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027258$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000622281 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000622281 9141_ $$y2024
000622281 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-18
000622281 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000622281 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2022$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000622281 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-18$$wger
000622281 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000622281 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000622281 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x0
000622281 980__ $$ajournal
000622281 980__ $$aVDB
000622281 980__ $$aUNRESTRICTED
000622281 980__ $$aI:(DE-H253)FS-PS-20131107
000622281 9801_ $$aFullTexts
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms7181$$p6181 -$$tNat. Commun.$$v6$$y2015
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2015.156$$p761 -$$tNat. Nanotechnol.$$v10$$y2015
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.237002$$p237002 -$$tPhys. Rev. Lett.$$v117$$y2016
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2752-4$$p42 -$$tNature$$v586$$y2020
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2753-3$$p47 -$$tNature$$v586$$y2020
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.121984$$p735 -$$tAppl. Phys. Lett.$$v73$$y1998
000622281 999C5 $$2Crossref$$oTransition-Edge Sensors 2005$$tTransition-Edge Sensors$$y2005
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-0248(87)90454-4$$p557 -$$tJ. Cryst. Growth$$v81$$y1987
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.5.024802$$p024802 -$$tPhys. Rev. Mater.$$v5$$y2021
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0040-6090(79)90033-6$$p303 -$$tThin Solid Films$$v63$$y1979
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.144518$$p144518 -$$tPhys. Rev. B$$v97$$y2018
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6668/aa572a$$p035010 -$$tSupercond. Sci. Technol.$$v30$$y2017
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0155557$$p035301 -$$tJ. Appl. Phys.$$v134$$y2023
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1729254$$p3541 -$$tJ. Appl. Phys.$$v34$$y1963
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1713414$$p554 -$$tJ. Appl. Phys.$$v35$$y1964
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1149/1.2426296$$p936 -$$tJ. Electrochem. Soc.$$v111$$y1964
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/TMAG.1981.1061003$$p573 -$$tIEEE Trans. Magn.$$v17$$y1981
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6668/abda5f$$p035012 -$$tSupercond. Sci. Technol.$$v34$$y2021
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6595/abb7bd$$p113001 -$$tPlasma Sources Sci. Technol.$$v29$$y2020
000622281 999C5 $$2Crossref$$oSputtering by Particle Bombardment 2007$$tSputtering by Particle Bombardment$$y2007
000622281 999C5 $$2Crossref$$oFilm Deposition by Plasma Techniques 1992$$tFilm Deposition by Plasma Techniques$$y1992
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0040-6090(89)90030-8$$p5 -$$tThin Solid Films$$v171$$y1989
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tsf.2009.10.145$$p4087 -$$tThin Solid Films$$v518$$y2010
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tsf.2012.04.083$$p5985 -$$tThin Solid Films$$v520$$y2012
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.149.231$$p231 -$$tPhys. Rev.$$v149$$y1966
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.26.347$$p347 -$$tJ. Phys. Soc. Jpn.$$v26$$y1969
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.181.1127$$p1127 -$$tPhys. Rev.$$v181$$y1969
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1709136$$p4390 -$$tJ. Appl. Phys.$$v38$$y1967
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.21.024047$$p024047 -$$tPhys. Rev. Appl.$$v21$$y2024
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01328964$$p442 -$$tZ. Phys.$$v154$$y1959
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.132.107$$p107 -$$tPhys. Rev.$$v132$$y1963
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1631733$$p466 -$$tJ. Appl. Phys.$$v95$$y2004
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cg3001834$$p2588 -$$tCryst. Growth Des.$$v12$$y2012
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.7.076201$$p076201 -$$tPhys. Rev. Mater.$$v7$$y2023
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0040-6090(79)90549-2$$p103 -$$tThin Solid Films$$v64$$y1979
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2478/nsm-2013-0002$$p7 -$$tNov. Supercond. Mater.$$v1$$y2013
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0225589$$p112602 -$$tAppl. Phys. Lett.$$v125$$y2024
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.35.7906$$p7906 -$$tPhys. Rev. B$$v35$$y1987
000622281 999C5 $$2Crossref$$oIon Bombardment Modification of Surfaces 1984$$tIon Bombardment Modification of Surfaces$$y1984
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-583X(89)90690-3$$p68 -$$tNucl. Instrum. Methods Phys. Res. B$$v44$$y1989
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1244358$$p614 -$$tScience$$v342$$y2013
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0022557$$p243101 -$$tAppl. Phys. Lett.$$v117$$y2020
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature26160$$p43 -$$tNature$$v556$$y2018
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.202202408$$p2202408 -$$tAdv. Mater.$$v34$$y2022
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.212507$$p212507 -$$tPhys. Rev. B$$v66$$y2002
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.014505$$p014505 -$$tPhys. Rev. B$$v71$$y2005
000622281 999C5 $$2Crossref$$oThe Elements 1998$$tThe Elements$$y1998
000622281 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/cryst12010031$$p31 -$$tCrystals$$v12$$y2022