001     619954
005     20250715171005.0
024 7 _ |a 10.1007/s00411-024-01086-z
|2 doi
024 7 _ |a 0006-3517
|2 ISSN
024 7 _ |a 0301-634X
|2 ISSN
024 7 _ |a 1432-2099
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-08045
|2 datacite_doi
024 7 _ |a 39115696
|2 pmid
024 7 _ |a WOS:001286364200001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4401422325
037 _ _ |a PUBDB-2024-08045
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Montanari, Juliette
|b 0
245 _ _ |a Pilot screening of potential matrikines resulting from collagen breakages through ionizing radiation
260 _ _ |a New York, NY
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737038259_1502867
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Little is known regarding radiation-induced matrikines and the possible degradation of extracellular matrix following therapeutic irradiation. The goal of this study was to determine if irradiation can cut collagen proteins at specific sites, inducing potentially biologically active peptides against cartilage cells. Chondrocytes cultured as 3D models were evaluated for extracellular matrix production. Bystander molecules were analyzed in vitro in the conditioned medium of X-irradiated chondrocytes. Preferential breakage sites were analyzed in collagen polypeptide by mass spectrometry and resulting peptides were tested against chondrocytes. 3D models of chondrocytes displayed a light extracellular matrix able to maintain the structure. Irradiated and bystander chondrocytes showed a surprising radiation sensitivity at low doses, characteristic of the presence of bystander factors, particularly following 0.1 Gy. The glycine-proline peptidic bond was observed as a preferential cleavage site and a possible weakness of the collagen polypeptide after irradiation. From the 46 collagen peptides analyzed against chondrocytes culture, 20 peptides induced a reduction of viability and 5 peptides induced an increase of viability at the highest concentration between 0.1 and 1 µg/ml. We conclude that irradiation promoted a site-specific degradation of collagen. The potentially resulting peptides induce negative or positive regulations of chondrocyte growth. Taken together, these results suggest that ionizing radiation causes a degradation of cartilage proteins, leading to a functional unbalance of cartilage homeostasis after exposure, contributing to cartilage dysfunction.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
542 _ _ |i 2024-08-01
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-08-08
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Schwob, Lucas
|0 P:(DE-H253)PIP1033236
|b 1
700 1 _ |a Marie-Brasset, Aurélie
|b 2
700 1 _ |a Vinatier, Claire
|b 3
700 1 _ |a Lepleux, Charlotte
|b 4
700 1 _ |a Antoine, Rodolphe
|b 5
700 1 _ |a Guicheux, Jérôme
|b 6
700 1 _ |a Poully, Jean-Christophe
|0 P:(DE-H253)PIP1081899
|b 7
|e Corresponding author
700 1 _ |a Chevalier, François
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 1 8 |a 10.1007/s00411-024-01086-z
|b Springer Science and Business Media LLC
|d 2024-08-01
|n 3
|p 337-350
|3 journal-article
|2 Crossref
|t Radiation and Environmental Biophysics
|v 63
|y 2024
|x 0301-634X
773 _ _ |a 10.1007/s00411-024-01086-z
|g Vol. 63, no. 3, p. 337 - 350
|0 PERI:(DE-600)1462083-2
|n 3
|p 337-350
|t Radiation and environmental biophysics
|v 63
|y 2024
|x 0301-634X
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/619954/files/s00411-024-01086-z.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/619954/files/s00411-024-01086-z.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:619954
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1033236
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1033236
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1081899
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIAT ENVIRON BIOPH : 2022
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
920 1 _ |0 I:(DE-H253)FS-BIG-20220318
|k FS-BIG
|l Biomoleküle in Gasphase
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-BIG-20220318
980 1 _ |a FullTexts
999 C 5 |a 10.1039/D3CP03264G
|9 -- missing cx lookup --
|2 Crossref
|u Abdelmouleh M, Amin M, Lalande M et al (2023) Ionizing radiation induces cross-linking of two noncovalently-bound collagen mimetic peptide triple helices in the absence of molecular environment. Physical Chemistry Chemical Physics Accepted
999 C 5 |a 10.1039/c1cp21531k
|9 -- missing cx lookup --
|1 R Antoine
|p 16494 -
|2 Crossref
|u Antoine R, Dugourd P (2011) Visible and ultraviolet spectroscopy of gas phase protein ions. Phys Chem Chem Phys 13:16494–16509
|t Phys Chem Chem Phys
|v 13
|y 2011
999 C 5 |a 10.1039/C3DT50485A
|9 -- missing cx lookup --
|1 B Bellina
|p 8328 -
|2 Crossref
|u Bellina B, Antoine R, Broyer M et al (2013) Formation and characterization of thioglycolic acid–silver cluster complexes. Dalton Trans 42:8328–8333. https://doi.org/10.1039/C3DT50485A
|t Dalton Trans
|v 42
|y 2013
999 C 5 |a 10.1080/15216540500090710
|9 -- missing cx lookup --
|1 A Bhattacharjee
|p 161 -
|2 Crossref
|u Bhattacharjee A, Bansal M (2005) Collagen structure: the Madras triple helix and the current scenario. IUBMB Life 57:161–172. https://doi.org/10.1080/15216540500090710
|t IUBMB Life
|v 57
|y 2005
999 C 5 |a 10.1042/CS20190893
|9 -- missing cx lookup --
|1 KEC Blokland
|p 2681 -
|2 Crossref
|u Blokland KEC, Pouwels SD, Schuliga M et al (2020) Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 134:2681–2706. https://doi.org/10.1042/CS20190893
|t Clin Sci (Lond)
|v 134
|y 2020
999 C 5 |a 10.1038/nrm3904
|9 -- missing cx lookup --
|1 C Bonnans
|p 786 -
|2 Crossref
|u Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801. https://doi.org/10.1038/nrm3904
|t Nat Rev Mol Cell Biol
|v 15
|y 2014
999 C 5 |a 10.1016/j.mrrev.2014.11.008
|9 -- missing cx lookup --
|1 F Chevalier
|p 280 -
|2 Crossref
|u Chevalier F, Hamdi DH, Saintigny Y, Lefaix J-L (2014) Proteomic overview and perspectives of the radiation-induced bystander effects. Mutat Research/Reviews Mutat Res 763:280–293. https://doi.org/10.1016/j.mrrev.2014.11.008
|t Mutat Research/Reviews Mutat Res
|v 763
|y 2014
999 C 5 |a 10.1177/1533033819871309
|9 -- missing cx lookup --
|1 F Chevalier
|p 153303381987130 -
|2 Crossref
|u Chevalier F, Hamdi DH, Lepleux C et al (2019) High LET Radiation overcomes in Vitro Resistance to X-Rays of Chondrosarcoma Cell lines. Technol Cancer Res Treat 18:1533033819871309. https://doi.org/10.1177/1533033819871309
|t Technol Cancer Res Treat
|v 18
|y 2019
999 C 5 |a 10.3390/polym14050876
|9 -- missing cx lookup --
|1 J Elango
|p 876 -
|2 Crossref
|u Elango J, Hou C, Bao B et al (2022) The Molecular Interaction of collagen with cell receptors for biological function. Polymers 14:876. https://doi.org/10.3390/polym14050876
|t Polymers
|v 14
|y 2022
999 C 5 |a 10.1002/art.11341
|9 -- missing cx lookup --
|1 F Finger
|p 3395 -
|2 Crossref
|u Finger F, Schörle C, Zien A et al (2003) Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2. Arthritis Rheum 48:3395–3403. https://doi.org/10.1002/art.11341
|t Arthritis Rheum
|v 48
|y 2003
999 C 5 |a 10.31083/j.fbl2709277
|9 -- missing cx lookup --
|1 A Gilbert
|p 277 -
|2 Crossref
|u Gilbert A, Payet V, Bernay B et al (2022) Label-free direct Mass Spectrometry Analysis of the Bystander effects Induced in chondrocytes by Chondrosarcoma cells irradiated with X-rays and Carbon ions. Front Bioscience-Landmark 27:277. https://doi.org/10.31083/j.fbl2709277
|t Front Bioscience-Landmark
|v 27
|y 2022
999 C 5 |a 10.1172/JCI117595
|9 -- missing cx lookup --
|1 MB Goldring
|p 2307 -
|2 Crossref
|u Goldring MB, Birkhead JR, Suen LF et al (1994) Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest 94:2307–2316. https://doi.org/10.1172/JCI117595
|t J Clin Invest
|v 94
|y 1994
999 C 5 |a 10.1002/bip.21725
|9 -- missing cx lookup --
|1 K Jariashvili
|p 189 -
|2 Crossref
|u Jariashvili K, Madhan B, Brodsky B et al (2012) Uv damage of collagen: insights from model collagen peptides. Biopolymers 97:189–198
|t Biopolymers
|v 97
|y 2012
999 C 5 |a 10.1016/j.addr.2022.114240
|9 -- missing cx lookup --
|1 N Jariwala
|p 114240 -
|2 Crossref
|u Jariwala N, Ozols M, Bell M et al (2022) Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev 185:114240. https://doi.org/10.1016/j.addr.2022.114240
|t Adv Drug Deliv Rev
|v 185
|y 2022
999 C 5 |a 10.1074/jbc.275.1.35
|9 -- missing cx lookup --
|1 CG Knight
|p 35 -
|2 Crossref
|u Knight CG, Morton LF, Peachey AR et al (2000) The collagen-binding A-domains of integrins α1β1 and α2β1Recognize the same specific amino acid sequence, GFOGER, in native (Triple-helical) collagens *. J Biol Chem 275:35–40. https://doi.org/10.1074/jbc.275.1.35
|t J Biol Chem
|v 275
|y 2000
999 C 5 |a 10.1371/journal.pone.0292298
|9 -- missing cx lookup --
|1 A Kowalewski
|p e0292298 -
|2 Crossref
|u Kowalewski A, Forde NR (2024) Fluence-dependent degradation of fibrillar type I collagen by 222 nm far-UVC radiation. PLoS ONE 19:e0292298. https://doi.org/10.1371/journal.pone.0292298
|t PLoS ONE
|v 19
|y 2024
999 C 5 |a 10.1103/PhysRevA.98.062701
|9 -- missing cx lookup --
|1 M Lalande
|p 062701 -
|2 Crossref
|u Lalande M, Abdelmouleh M, Ryszka M et al (2018a) Irradiation of isolated collagen mimetic peptides by x rays and carbon ions at the Bragg-peak energy. Phys Rev A 98:062701. https://doi.org/10.1103/PhysRevA.98.062701
|t Phys Rev A
|v 98
|y 2018
999 C 5 |a 10.1002/chem.201802929
|9 -- missing cx lookup --
|1 M Lalande
|p 13728 -
|2 Crossref
|u Lalande M, Comby-Zerbino C, Bouakil M et al (2018b) Isolated collagen mimetic peptide assemblies have stable triple-Helix structures. Chemistry-a Eur J 24:13728–13733. https://doi.org/10.1002/chem.201802929
|t Chemistry-a Eur J
|v 24
|y 2018
999 C 5 |a 10.1088/1361-6560/ab1854
|9 -- missing cx lookup --
|1 C Le Deroff
|p 115015 -
|2 Crossref
|u Le Deroff C, Frelin A-M, Ledoux X (2019) Energy dependence of a scintillating fiber detector for preclinical dosimetry with an image guided micro-irradiator. Phys Med Biol 64:115015. https://doi.org/10.1088/1361-6560/ab1854
|t Phys Med Biol
|v 64
|y 2019
999 C 5 |a 10.1007/s12079-019-00515-9
|9 -- missing cx lookup --
|1 C Lepleux
|p 343 -
|2 Crossref
|u Lepleux C, Marie-Brasset A, Temelie M et al (2019) Bystander effectors of chondrosarcoma cells irradiated at different LET impair proliferation of chondrocytes. J Cell Commun Signal 13:343–356. https://doi.org/10.1007/s12079-019-00515-9
|t J Cell Commun Signal
|v 13
|y 2019
999 C 5 |a 10.1038/s41598-019-41129-w
|9 -- missing cx lookup --
|1 MP Little
|p 4891 -
|2 Crossref
|u Little MP, Fang M, Liu JJ et al (2019) Inflammatory disease and C-reactive protein in relation to therapeutic ionising radiation exposure in the US Radiologic technologists. Sci Rep 9:4891. https://doi.org/10.1038/s41598-019-41129-w
|t Sci Rep
|v 9
|y 2019
999 C 5 |a 10.1016/j.biochi.2004.10.006
|9 -- missing cx lookup --
|1 FX Maquart
|p 353 -
|2 Crossref
|u Maquart FX, Bellon G, Pasco S, Monboisse JC (2005) Matrikines in the regulation of extracellular matrix degradation. Biochimie 87:353–360. https://doi.org/10.1016/j.biochi.2004.10.006
|t Biochimie
|v 87
|y 2005
999 C 5 |a 10.1016/j.mbplus.2020.100041
|9 -- missing cx lookup --
|1 MC McCabe
|p 100041 -
|2 Crossref
|u McCabe MC, Hill RC, Calderone K et al (2020) Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol Plus 8:100041. https://doi.org/10.1016/j.mbplus.2020.100041
|t Matrix Biol Plus
|v 8
|y 2020
999 C 5 |a 10.1152/ajpcell.00398.2009
|9 -- missing cx lookup --
|1 C Merceron
|p C355 -
|2 Crossref
|u Merceron C, Vinatier C, Portron S et al (2010) Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiology-Cell Physiol 298:C355–C364. https://doi.org/10.1152/ajpcell.00398.2009
|t Am J Physiology-Cell Physiol
|v 298
|y 2010
999 C 5 |a 10.1093/bioinformatics/btm076
|9 -- missing cx lookup --
|1 JS Papadopoulos
|p 1073 -
|2 Crossref
|u Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079. https://doi.org/10.1093/bioinformatics/btm076
|t Bioinformatics
|v 23
|y 2007
999 C 5 |a 10.1021/ac901278y
|9 -- missing cx lookup --
|1 T Pekar Second
|p 7757 -
|2 Crossref
|u Pekar Second T, Blethrow JD, Schwartz JC et al (2009) Dual-pressure Linear Ion Trap Mass Spectrometer improving the analysis of complex protein mixtures. Anal Chem 81:7757–7765. https://doi.org/10.1021/ac901278y
|t Anal Chem
|v 81
|y 2009
999 C 5 |a 10.1667/RR13928.1
|9 -- missing cx lookup --
|1 Y Saintigny
|p 135 -
|2 Crossref
|u Saintigny Y, Cruet-Hennequart S, Hamdi DH et al (2015) Impact of therapeutic irradiation on healthy articular cartilage. Radiat Res 183:135–146. https://doi.org/10.1667/RR13928.1
|t Radiat Res
|v 183
|y 2015
999 C 5 |a 10.1039/c7cp03376a
|9 -- missing cx lookup --
|1 L Schwob
|p 22895 -
|2 Crossref
|u Schwob L, Lalande M, Egorov D et al (2017a) Radical-driven processes within a peptidic sequence of type I collagen upon single-photon ionisation in the gas phase. Phys Chem Chem Phys 19:22895–22904. https://doi.org/10.1039/c7cp03376a
|t Phys Chem Chem Phys
|v 19
|y 2017
999 C 5 |a 10.1039/c7cp02527k
|9 -- missing cx lookup --
|1 L Schwob
|p 18321 -
|2 Crossref
|u Schwob L, Lalande M, Rangama J et al (2017b) Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range. Phys Chem Chem Phys 19:18321–18329. https://doi.org/10.1039/c7cp02527k
|t Phys Chem Chem Phys
|v 19
|y 2017
999 C 5 |a 10.1002/path.2730
|9 -- missing cx lookup --
|1 MJ Sherratt
|p 32 -
|2 Crossref
|u Sherratt MJ, Bayley CP, Reilly SM et al (2010) Low-dose ultraviolet radiation selectively degrades chromophore-rich extracellular matrix components. J Pathol 222:32–40. https://doi.org/10.1002/path.2730
|t J Pathol
|v 222
|y 2010
999 C 5 |a 10.1146/annurev.biochem.77.032207.120833
|9 -- missing cx lookup --
|1 MD Shoulders
|p 929 -
|2 Crossref
|u Shoulders MD, Raines RT (2009) Collagen Structure and Stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
|t Annu Rev Biochem
|v 78
|y 2009
999 C 5 |a 10.1007/978-3-642-58456-5_10
|9 -- missing cx lookup --
|1 A Siméon
|p 95 -
|2 Crossref
|u Siméon A, Monier F, Emonard H et al (1999) Fibroblast-cytokine-extracellular matrix interactions in wound repair. Curr Top Pathol 93:95–101. https://doi.org/10.1007/978-3-642-58456-5_10
|t Curr Top Pathol
|v 93
|y 1999
999 C 5 |a 10.1016/j.bbapap.2011.06.020
|9 -- missing cx lookup --
|1 L Troeberg
|p 133 -
|2 Crossref
|u Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochimica et Biophysica Acta (BBA) -. Proteins Proteom 1824:133–145. https://doi.org/10.1016/j.bbapap.2011.06.020
|t Proteins Proteom
|v 1824
|y 2012
999 C 5 |a 10.3390/ijms22157957
|9 -- missing cx lookup --
|1 M Tudor
|p 7957 -
|2 Crossref
|u Tudor M, Gilbert A, Lepleux C et al (2021) A proteomic study suggests stress granules as new potential actors in Radiation-Induced Bystander effects. Int J Mol Sci 22:7957. https://doi.org/10.3390/ijms22157957
|t Int J Mol Sci
|v 22
|y 2021
999 C 5 |a 10.1016/S0021-9258(18)83767-X
|9 -- missing cx lookup --
|1 T Vartio
|p 4471 -
|2 Crossref
|u Vartio T (1989) Regular fragmentation of hydrogen peroxide-treated fibronectin. J Biol Chem 264:4471–4475. https://doi.org/10.1016/S0021-9258(18)83767-X
|t J Biol Chem
|v 264
|y 1989
999 C 5 |a 10.1016/j.ijrobp.2012.02.052
|9 -- missing cx lookup --
|1 M Wakatsuki
|p e103 -
|2 Crossref
|u Wakatsuki M, Magpayo N, Kawamura H, Held KD (2012) Differential bystander signaling between radioresistant chondrosarcoma cells and fibroblasts after x-ray, proton, iron ion and carbon ion exposures. Int J Radiat Oncol Biol Phys 84:e103–108. https://doi.org/10.1016/j.ijrobp.2012.02.052
|t Int J Radiat Oncol Biol Phys
|v 84
|y 2012
999 C 5 |a 10.1089/ars.2013.5653
|9 -- missing cx lookup --
|1 REB Watson
|p 1063 -
|2 Crossref
|u Watson REB, Gibbs NK, Griffiths CEM, Sherratt MJ (2014) Damage to skin extracellular matrix induced by UV exposure. Antioxid Redox Signal 21:1063–1077. https://doi.org/10.1089/ars.2013.5653
|t Antioxid Redox Signal
|v 21
|y 2014
999 C 5 |a 10.3109/09553002.2013.747015
|9 -- missing cx lookup --
|1 JS Willey
|p 268 -
|2 Crossref
|u Willey JS, Long DL, Vanderman KS, Loeser RF (2013) Ionizing radiation causes active degradation and reduces matrix synthesis in articular cartilage. Int J Radiat Biol 89:268–277. https://doi.org/10.3109/09553002.2013.747015
|t Int J Radiat Biol
|v 89
|y 2013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21