000619954 001__ 619954
000619954 005__ 20250715171005.0
000619954 0247_ $$2doi$$a10.1007/s00411-024-01086-z
000619954 0247_ $$2ISSN$$a0006-3517
000619954 0247_ $$2ISSN$$a0301-634X
000619954 0247_ $$2ISSN$$a1432-2099
000619954 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-08045
000619954 0247_ $$2pmid$$a39115696
000619954 0247_ $$2WOS$$aWOS:001286364200001
000619954 0247_ $$2openalex$$aopenalex:W4401422325
000619954 037__ $$aPUBDB-2024-08045
000619954 041__ $$aEnglish
000619954 082__ $$a530
000619954 1001_ $$aMontanari, Juliette$$b0
000619954 245__ $$aPilot screening of potential matrikines resulting from collagen breakages through ionizing radiation
000619954 260__ $$aNew York, NY$$bSpringer$$c2024
000619954 3367_ $$2DRIVER$$aarticle
000619954 3367_ $$2DataCite$$aOutput Types/Journal article
000619954 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737038259_1502867
000619954 3367_ $$2BibTeX$$aARTICLE
000619954 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000619954 3367_ $$00$$2EndNote$$aJournal Article
000619954 520__ $$aLittle is known regarding radiation-induced matrikines and the possible degradation of extracellular matrix following therapeutic irradiation. The goal of this study was to determine if irradiation can cut collagen proteins at specific sites, inducing potentially biologically active peptides against cartilage cells. Chondrocytes cultured as 3D models were evaluated for extracellular matrix production. Bystander molecules were analyzed in vitro in the conditioned medium of X-irradiated chondrocytes. Preferential breakage sites were analyzed in collagen polypeptide by mass spectrometry and resulting peptides were tested against chondrocytes. 3D models of chondrocytes displayed a light extracellular matrix able to maintain the structure. Irradiated and bystander chondrocytes showed a surprising radiation sensitivity at low doses, characteristic of the presence of bystander factors, particularly following 0.1 Gy. The glycine-proline peptidic bond was observed as a preferential cleavage site and a possible weakness of the collagen polypeptide after irradiation. From the 46 collagen peptides analyzed against chondrocytes culture, 20 peptides induced a reduction of viability and 5 peptides induced an increase of viability at the highest concentration between 0.1 and 1 µg/ml. We conclude that irradiation promoted a site-specific degradation of collagen. The potentially resulting peptides induce negative or positive regulations of chondrocyte growth. Taken together, these results suggest that ionizing radiation causes a degradation of cartilage proteins, leading to a functional unbalance of cartilage homeostasis after exposure, contributing to cartilage dysfunction. 
000619954 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000619954 542__ $$2Crossref$$i2024-08-01$$uhttps://creativecommons.org/licenses/by/4.0
000619954 542__ $$2Crossref$$i2024-08-08$$uhttps://creativecommons.org/licenses/by/4.0
000619954 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000619954 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000619954 7001_ $$0P:(DE-H253)PIP1033236$$aSchwob, Lucas$$b1
000619954 7001_ $$aMarie-Brasset, Aurélie$$b2
000619954 7001_ $$aVinatier, Claire$$b3
000619954 7001_ $$aLepleux, Charlotte$$b4
000619954 7001_ $$aAntoine, Rodolphe$$b5
000619954 7001_ $$aGuicheux, Jérôme$$b6
000619954 7001_ $$0P:(DE-H253)PIP1081899$$aPoully, Jean-Christophe$$b7$$eCorresponding author
000619954 7001_ $$0P:(DE-HGF)0$$aChevalier, François$$b8$$eCorresponding author
000619954 77318 $$2Crossref$$3journal-article$$a10.1007/s00411-024-01086-z$$bSpringer Science and Business Media LLC$$d2024-08-01$$n3$$p337-350$$tRadiation and Environmental Biophysics$$v63$$x0301-634X$$y2024
000619954 773__ $$0PERI:(DE-600)1462083-2$$a10.1007/s00411-024-01086-z$$gVol. 63, no. 3, p. 337 - 350$$n3$$p337-350$$tRadiation and environmental biophysics$$v63$$x0301-634X$$y2024
000619954 8564_ $$uhttps://bib-pubdb1.desy.de/record/619954/files/s00411-024-01086-z.pdf$$yOpenAccess
000619954 8564_ $$uhttps://bib-pubdb1.desy.de/record/619954/files/s00411-024-01086-z.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000619954 909CO $$ooai:bib-pubdb1.desy.de:619954$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000619954 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1033236$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000619954 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1033236$$aEuropean XFEL$$b1$$kXFEL.EU
000619954 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081899$$aExternal Institute$$b7$$kExtern
000619954 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000619954 9141_ $$y2024
000619954 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000619954 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000619954 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000619954 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000619954 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-21$$wger
000619954 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000619954 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000619954 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000619954 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000619954 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
000619954 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
000619954 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000619954 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIAT ENVIRON BIOPH : 2022$$d2024-12-10
000619954 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
000619954 9201_ $$0I:(DE-H253)FS-BIG-20220318$$kFS-BIG$$lBiomoleküle in Gasphase$$x0
000619954 980__ $$ajournal
000619954 980__ $$aVDB
000619954 980__ $$aUNRESTRICTED
000619954 980__ $$aI:(DE-H253)FS-BIG-20220318
000619954 9801_ $$aFullTexts
000619954 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D3CP03264G$$uAbdelmouleh M, Amin M, Lalande M et al (2023) Ionizing radiation induces cross-linking of two noncovalently-bound collagen mimetic peptide triple helices in the absence of molecular environment. Physical Chemistry Chemical Physics Accepted
000619954 999C5 $$1R Antoine$$2Crossref$$9-- missing cx lookup --$$a10.1039/c1cp21531k$$p16494 -$$tPhys Chem Chem Phys$$uAntoine R, Dugourd P (2011) Visible and ultraviolet spectroscopy of gas phase protein ions. Phys Chem Chem Phys 13:16494–16509$$v13$$y2011
000619954 999C5 $$1B Bellina$$2Crossref$$9-- missing cx lookup --$$a10.1039/C3DT50485A$$p8328 -$$tDalton Trans$$uBellina B, Antoine R, Broyer M et al (2013) Formation and characterization of thioglycolic acid–silver cluster complexes. Dalton Trans 42:8328–8333. https://doi.org/10.1039/C3DT50485A$$v42$$y2013
000619954 999C5 $$1A Bhattacharjee$$2Crossref$$9-- missing cx lookup --$$a10.1080/15216540500090710$$p161 -$$tIUBMB Life$$uBhattacharjee A, Bansal M (2005) Collagen structure: the Madras triple helix and the current scenario. IUBMB Life 57:161–172. https://doi.org/10.1080/15216540500090710$$v57$$y2005
000619954 999C5 $$1KEC Blokland$$2Crossref$$9-- missing cx lookup --$$a10.1042/CS20190893$$p2681 -$$tClin Sci (Lond)$$uBlokland KEC, Pouwels SD, Schuliga M et al (2020) Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 134:2681–2706. https://doi.org/10.1042/CS20190893$$v134$$y2020
000619954 999C5 $$1C Bonnans$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm3904$$p786 -$$tNat Rev Mol Cell Biol$$uBonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801. https://doi.org/10.1038/nrm3904$$v15$$y2014
000619954 999C5 $$1F Chevalier$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mrrev.2014.11.008$$p280 -$$tMutat Research/Reviews Mutat Res$$uChevalier F, Hamdi DH, Saintigny Y, Lefaix J-L (2014) Proteomic overview and perspectives of the radiation-induced bystander effects. Mutat Research/Reviews Mutat Res 763:280–293. https://doi.org/10.1016/j.mrrev.2014.11.008$$v763$$y2014
000619954 999C5 $$1F Chevalier$$2Crossref$$9-- missing cx lookup --$$a10.1177/1533033819871309$$p153303381987130 -$$tTechnol Cancer Res Treat$$uChevalier F, Hamdi DH, Lepleux C et al (2019) High LET Radiation overcomes in Vitro Resistance to X-Rays of Chondrosarcoma Cell lines. Technol Cancer Res Treat 18:1533033819871309. https://doi.org/10.1177/1533033819871309$$v18$$y2019
000619954 999C5 $$1J Elango$$2Crossref$$9-- missing cx lookup --$$a10.3390/polym14050876$$p876 -$$tPolymers$$uElango J, Hou C, Bao B et al (2022) The Molecular Interaction of collagen with cell receptors for biological function. Polymers 14:876. https://doi.org/10.3390/polym14050876$$v14$$y2022
000619954 999C5 $$1F Finger$$2Crossref$$9-- missing cx lookup --$$a10.1002/art.11341$$p3395 -$$tArthritis Rheum$$uFinger F, Schörle C, Zien A et al (2003) Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2. Arthritis Rheum 48:3395–3403. https://doi.org/10.1002/art.11341$$v48$$y2003
000619954 999C5 $$1A Gilbert$$2Crossref$$9-- missing cx lookup --$$a10.31083/j.fbl2709277$$p277 -$$tFront Bioscience-Landmark$$uGilbert A, Payet V, Bernay B et al (2022) Label-free direct Mass Spectrometry Analysis of the Bystander effects Induced in chondrocytes by Chondrosarcoma cells irradiated with X-rays and Carbon ions. Front Bioscience-Landmark 27:277. https://doi.org/10.31083/j.fbl2709277$$v27$$y2022
000619954 999C5 $$1MB Goldring$$2Crossref$$9-- missing cx lookup --$$a10.1172/JCI117595$$p2307 -$$tJ Clin Invest$$uGoldring MB, Birkhead JR, Suen LF et al (1994) Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest 94:2307–2316. https://doi.org/10.1172/JCI117595$$v94$$y1994
000619954 999C5 $$1K Jariashvili$$2Crossref$$9-- missing cx lookup --$$a10.1002/bip.21725$$p189 -$$tBiopolymers$$uJariashvili K, Madhan B, Brodsky B et al (2012) Uv damage of collagen: insights from model collagen peptides. Biopolymers 97:189–198$$v97$$y2012
000619954 999C5 $$1N Jariwala$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.addr.2022.114240$$p114240 -$$tAdv Drug Deliv Rev$$uJariwala N, Ozols M, Bell M et al (2022) Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev 185:114240. https://doi.org/10.1016/j.addr.2022.114240$$v185$$y2022
000619954 999C5 $$1CG Knight$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.275.1.35$$p35 -$$tJ Biol Chem$$uKnight CG, Morton LF, Peachey AR et al (2000) The collagen-binding A-domains of integrins α1β1 and α2β1Recognize the same specific amino acid sequence, GFOGER, in native (Triple-helical) collagens *. J Biol Chem 275:35–40. https://doi.org/10.1074/jbc.275.1.35$$v275$$y2000
000619954 999C5 $$1A Kowalewski$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0292298$$pe0292298 -$$tPLoS ONE$$uKowalewski A, Forde NR (2024) Fluence-dependent degradation of fibrillar type I collagen by 222 nm far-UVC radiation. PLoS ONE 19:e0292298. https://doi.org/10.1371/journal.pone.0292298$$v19$$y2024
000619954 999C5 $$1M Lalande$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.98.062701$$p062701 -$$tPhys Rev A$$uLalande M, Abdelmouleh M, Ryszka M et al (2018a) Irradiation of isolated collagen mimetic peptides by x rays and carbon ions at the Bragg-peak energy. Phys Rev A 98:062701. https://doi.org/10.1103/PhysRevA.98.062701$$v98$$y2018
000619954 999C5 $$1M Lalande$$2Crossref$$9-- missing cx lookup --$$a10.1002/chem.201802929$$p13728 -$$tChemistry-a Eur J$$uLalande M, Comby-Zerbino C, Bouakil M et al (2018b) Isolated collagen mimetic peptide assemblies have stable triple-Helix structures. Chemistry-a Eur J 24:13728–13733. https://doi.org/10.1002/chem.201802929$$v24$$y2018
000619954 999C5 $$1C Le Deroff$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6560/ab1854$$p115015 -$$tPhys Med Biol$$uLe Deroff C, Frelin A-M, Ledoux X (2019) Energy dependence of a scintillating fiber detector for preclinical dosimetry with an image guided micro-irradiator. Phys Med Biol 64:115015. https://doi.org/10.1088/1361-6560/ab1854$$v64$$y2019
000619954 999C5 $$1C Lepleux$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12079-019-00515-9$$p343 -$$tJ Cell Commun Signal$$uLepleux C, Marie-Brasset A, Temelie M et al (2019) Bystander effectors of chondrosarcoma cells irradiated at different LET impair proliferation of chondrocytes. J Cell Commun Signal 13:343–356. https://doi.org/10.1007/s12079-019-00515-9$$v13$$y2019
000619954 999C5 $$1MP Little$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-019-41129-w$$p4891 -$$tSci Rep$$uLittle MP, Fang M, Liu JJ et al (2019) Inflammatory disease and C-reactive protein in relation to therapeutic ionising radiation exposure in the US Radiologic technologists. Sci Rep 9:4891. https://doi.org/10.1038/s41598-019-41129-w$$v9$$y2019
000619954 999C5 $$1FX Maquart$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biochi.2004.10.006$$p353 -$$tBiochimie$$uMaquart FX, Bellon G, Pasco S, Monboisse JC (2005) Matrikines in the regulation of extracellular matrix degradation. Biochimie 87:353–360. https://doi.org/10.1016/j.biochi.2004.10.006$$v87$$y2005
000619954 999C5 $$1MC McCabe$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mbplus.2020.100041$$p100041 -$$tMatrix Biol Plus$$uMcCabe MC, Hill RC, Calderone K et al (2020) Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol Plus 8:100041. https://doi.org/10.1016/j.mbplus.2020.100041$$v8$$y2020
000619954 999C5 $$1C Merceron$$2Crossref$$9-- missing cx lookup --$$a10.1152/ajpcell.00398.2009$$pC355 -$$tAm J Physiology-Cell Physiol$$uMerceron C, Vinatier C, Portron S et al (2010) Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiology-Cell Physiol 298:C355–C364. https://doi.org/10.1152/ajpcell.00398.2009$$v298$$y2010
000619954 999C5 $$1JS Papadopoulos$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btm076$$p1073 -$$tBioinformatics$$uPapadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079. https://doi.org/10.1093/bioinformatics/btm076$$v23$$y2007
000619954 999C5 $$1T Pekar Second$$2Crossref$$9-- missing cx lookup --$$a10.1021/ac901278y$$p7757 -$$tAnal Chem$$uPekar Second T, Blethrow JD, Schwartz JC et al (2009) Dual-pressure Linear Ion Trap Mass Spectrometer improving the analysis of complex protein mixtures. Anal Chem 81:7757–7765. https://doi.org/10.1021/ac901278y$$v81$$y2009
000619954 999C5 $$1Y Saintigny$$2Crossref$$9-- missing cx lookup --$$a10.1667/RR13928.1$$p135 -$$tRadiat Res$$uSaintigny Y, Cruet-Hennequart S, Hamdi DH et al (2015) Impact of therapeutic irradiation on healthy articular cartilage. Radiat Res 183:135–146. https://doi.org/10.1667/RR13928.1$$v183$$y2015
000619954 999C5 $$1L Schwob$$2Crossref$$9-- missing cx lookup --$$a10.1039/c7cp03376a$$p22895 -$$tPhys Chem Chem Phys$$uSchwob L, Lalande M, Egorov D et al (2017a) Radical-driven processes within a peptidic sequence of type I collagen upon single-photon ionisation in the gas phase. Phys Chem Chem Phys 19:22895–22904. https://doi.org/10.1039/c7cp03376a$$v19$$y2017
000619954 999C5 $$1L Schwob$$2Crossref$$9-- missing cx lookup --$$a10.1039/c7cp02527k$$p18321 -$$tPhys Chem Chem Phys$$uSchwob L, Lalande M, Rangama J et al (2017b) Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range. Phys Chem Chem Phys 19:18321–18329. https://doi.org/10.1039/c7cp02527k$$v19$$y2017
000619954 999C5 $$1MJ Sherratt$$2Crossref$$9-- missing cx lookup --$$a10.1002/path.2730$$p32 -$$tJ Pathol$$uSherratt MJ, Bayley CP, Reilly SM et al (2010) Low-dose ultraviolet radiation selectively degrades chromophore-rich extracellular matrix components. J Pathol 222:32–40. https://doi.org/10.1002/path.2730$$v222$$y2010
000619954 999C5 $$1MD Shoulders$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.biochem.77.032207.120833$$p929 -$$tAnnu Rev Biochem$$uShoulders MD, Raines RT (2009) Collagen Structure and Stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833$$v78$$y2009
000619954 999C5 $$1A Siméon$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-58456-5_10$$p95 -$$tCurr Top Pathol$$uSiméon A, Monier F, Emonard H et al (1999) Fibroblast-cytokine-extracellular matrix interactions in wound repair. Curr Top Pathol 93:95–101. https://doi.org/10.1007/978-3-642-58456-5_10$$v93$$y1999
000619954 999C5 $$1L Troeberg$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbapap.2011.06.020$$p133 -$$tProteins Proteom$$uTroeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochimica et Biophysica Acta (BBA) -. Proteins Proteom 1824:133–145. https://doi.org/10.1016/j.bbapap.2011.06.020$$v1824$$y2012
000619954 999C5 $$1M Tudor$$2Crossref$$9-- missing cx lookup --$$a10.3390/ijms22157957$$p7957 -$$tInt J Mol Sci$$uTudor M, Gilbert A, Lepleux C et al (2021) A proteomic study suggests stress granules as new potential actors in Radiation-Induced Bystander effects. Int J Mol Sci 22:7957. https://doi.org/10.3390/ijms22157957$$v22$$y2021
000619954 999C5 $$1T Vartio$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(18)83767-X$$p4471 -$$tJ Biol Chem$$uVartio T (1989) Regular fragmentation of hydrogen peroxide-treated fibronectin. J Biol Chem 264:4471–4475. https://doi.org/10.1016/S0021-9258(18)83767-X$$v264$$y1989
000619954 999C5 $$1M Wakatsuki$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijrobp.2012.02.052$$pe103 -$$tInt J Radiat Oncol Biol Phys$$uWakatsuki M, Magpayo N, Kawamura H, Held KD (2012) Differential bystander signaling between radioresistant chondrosarcoma cells and fibroblasts after x-ray, proton, iron ion and carbon ion exposures. Int J Radiat Oncol Biol Phys 84:e103–108. https://doi.org/10.1016/j.ijrobp.2012.02.052$$v84$$y2012
000619954 999C5 $$1REB Watson$$2Crossref$$9-- missing cx lookup --$$a10.1089/ars.2013.5653$$p1063 -$$tAntioxid Redox Signal$$uWatson REB, Gibbs NK, Griffiths CEM, Sherratt MJ (2014) Damage to skin extracellular matrix induced by UV exposure. Antioxid Redox Signal 21:1063–1077. https://doi.org/10.1089/ars.2013.5653$$v21$$y2014
000619954 999C5 $$1JS Willey$$2Crossref$$9-- missing cx lookup --$$a10.3109/09553002.2013.747015$$p268 -$$tInt J Radiat Biol$$uWilley JS, Long DL, Vanderman KS, Loeser RF (2013) Ionizing radiation causes active degradation and reduces matrix synthesis in articular cartilage. Int J Radiat Biol 89:268–277. https://doi.org/10.3109/09553002.2013.747015$$v89$$y2013