001     615592
005     20250715171400.0
024 7 _ |a 10.3390/fluids9120273
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-06199
|2 datacite_doi
024 7 _ |a WOS:001392345600001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4404613146
037 _ _ |a PUBDB-2024-06199
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Kovačič, Krištof
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Numerical analysis of Knudsen number of helium flow through gas-focused liquid sheet micro-nozzle
260 _ _ |a Belgrade
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732712805_712646
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This work aims to verify whether the continuum mechanics assumption holds for the numerical simulation of a typical sample delivery system in Serial Femtosecond Crystallography (SFX). Knudsen numbers were calculated based on the numerical simulation results of helium flow through the gas-focused liquid sheet nozzle into the vacuum chamber, representing the upper limit of Knudsen number for such systems. The analysed flow is considered steady, compressible and laminar. The numerical results are mesh-independent, with a Grid Convergence Index signifi-cantly lower than 1 % for global and local analysis. The study is based on an improved definition of the numerical Knudsen number, a combination of cell Knudsen number and physical Knudsen number. In the analysis, no-slip boundary and low-pressure boundary slip conditions are com-pared. No significant differences are observed. The study justifies using computational fluid dy-namics (CFD) analysis for SFX sample delivery systems based on the assumption of continuum mechanics.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 1
536 _ _ |a DFG project G:(GEPRIS)194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731)
|0 G:(GEPRIS)194651731
|c 194651731
|x 2
542 _ _ |i 2024-11-22
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Bajt, Sasa
|0 P:(DE-H253)PIP1006443
|b 1
700 1 _ |a Sarler, Bozidar
|0 P:(DE-H253)PIP1087069
|b 2
|e Corresponding author
773 1 8 |a 10.3390/fluids9120273
|b MDPI AG
|d 2024-11-22
|n 12
|p 273
|3 journal-article
|2 Crossref
|t Fluids
|v 9
|y 2024
|x 2311-5521
773 _ _ |a 10.3390/fluids9120273
|g Vol. 9, no. 12, p. 273 -
|0 PERI:(DE-600)2882362-X
|n 12
|p 273
|t Fluids
|v 9
|y 2024
|x 2311-5521
856 4 _ |u https://bib-pubdb1.desy.de/record/615592/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/615592/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/615592/files/fluids-09-00273-v2.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/615592/files/fluids-09-00273-v2.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:615592
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1006443
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1006443
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1006443
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1087069
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1087069
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:28:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:28:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:28:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-03
920 1 _ |0 I:(DE-H253)FS-ML-20120731
|k FS-ML
|l FS-Arbeitsgruppe
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-ML-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nature09750
|9 -- missing cx lookup --
|1 Chapman
|p 73 -
|2 Crossref
|t Nature
|v 470
|y 2011
999 C 5 |a 10.1103/PhysRevLett.80.285
|9 -- missing cx lookup --
|p 285 -
|2 Crossref
|t Phys. Rev. Lett.
|v 80
|y 1998
999 C 5 |a 10.1088/0022-3727/41/19/195505
|9 -- missing cx lookup --
|1 DePonte
|p 195505 -
|2 Crossref
|t J. Phys. D Appl. Phys.
|v 41
|y 2008
999 C 5 |a 10.1063/1.4936843
|9 -- missing cx lookup --
|1 Beyerlein
|p 125104 -
|2 Crossref
|t Rev. Sci. Instrum.
|v 86
|y 2015
999 C 5 |a 10.1098/rstb.2013.0337
|9 -- missing cx lookup --
|2 Crossref
|u Weierstall, U. (2014). Liquid Sample Delivery Techniques for Serial Femtosecond Crystallography. Philos. Trans. R. Soc. B Biol. Sci., 369.
999 C 5 |a 10.1107/S1600577519000894
|9 -- missing cx lookup --
|1 Schulz
|p 339 -
|2 Crossref
|t J. Synchrotron Radiat.
|v 26
|y 2019
999 C 5 |a 10.1364/OE.22.014135
|9 -- missing cx lookup --
|1 Kondoh
|p 14135 -
|2 Crossref
|t Opt. Express
|v 22
|y 2014
999 C 5 |a 10.1063/1.4928715
|9 -- missing cx lookup --
|1 Ekimova
|p 054301 -
|2 Crossref
|t Struct. Dyn.
|v 2
|y 2015
999 C 5 |a 10.1063/1.4990130
|9 -- missing cx lookup --
|1 Galinis
|p 083117 -
|2 Crossref
|t Rev. Sci. Instrum.
|v 88
|y 2017
999 C 5 |a 10.3389/fmolb.2022.1044610
|9 -- missing cx lookup --
|2 Crossref
|u Barnard, J.C.T., Lee, J.P., Alexander, O., Jarosch, S., Garratt, D., Picciuto, R., Kowalczyk, K., Ferchaud, C., Gregory, A., and Matthews, M. (2022). Delivery of Stable Ultra-Thin Liquid Sheets in Vacuum for Biochemical Spectroscopy. Front. Mol. Biosci., 9.
999 C 5 |2 Crossref
|u Buchmann, A., Hoberg, C., and Havenith, M. (September, January 28). Improvements in Windowless Spectroscopy: 3D Printed Nozzles. Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Delft, The Netherlands.
999 C 5 |a 10.1088/2515-7647/abb0ef
|9 -- missing cx lookup --
|1 Yin
|p 044007 -
|2 Crossref
|t J. Phys. Photon.
|v 2
|y 2020
999 C 5 |a 10.3389/fmolb.2022.1048932
|9 -- missing cx lookup --
|2 Crossref
|u Hoffman, D.J., van Driel, T.B., Kroll, T., Crissman, C.J., Ryland, E.S., Nelson, K.J., Cordones, A.A., Koralek, J.D., and DePonte, D.P. (2022). Microfluidic Liquid Sheets as Large-Area Targets for High Repetition XFELs. Front. Mol. Biosci., 9.
999 C 5 |a 10.1063/4.0000139
|9 -- missing cx lookup --
|1 Chang
|p 014901 -
|2 Crossref
|t Struct. Dyn.
|v 9
|y 2022
999 C 5 |a 10.1063/1.4993755
|9 -- missing cx lookup --
|1 Fondell
|p 054902 -
|2 Crossref
|t Struct. Dyn.
|v 4
|y 2017
999 C 5 |a 10.1017/hpl.2019.35
|9 -- missing cx lookup --
|1 George
|p e50 -
|2 Crossref
|t High Power Laser Sci. Eng.
|v 7
|y 2019
999 C 5 |a 10.1038/s41467-018-06040-4
|9 -- missing cx lookup --
|1 Luu
|p 3723 -
|2 Crossref
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1021/acs.jpclett.9b03559
|9 -- missing cx lookup --
|1 Smith
|p 1981 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 11
|y 2020
999 C 5 |a 10.1038/s41467-018-03696-w
|9 -- missing cx lookup --
|1 Koralek
|p 1353 -
|2 Crossref
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1107/S2052252523007972
|9 -- missing cx lookup --
|1 Konold
|p 662 -
|2 Crossref
|t IUCrJ
|v 10
|y 2023
999 C 5 |a 10.1039/D0CP06045C
|9 -- missing cx lookup --
|1 Yang
|p 1308 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 23
|y 2021
999 C 5 |a 10.1063/1.5144518
|9 -- missing cx lookup --
|1 Nunes
|p 024301 -
|2 Crossref
|t Struct. Dyn.
|v 7
|y 2020
999 C 5 |a 10.3390/ma14061572
|9 -- missing cx lookup --
|2 Crossref
|u Šarler, B., Zahoor, R., and Bajt, S. (2021). Alternative Geometric Arrangements of the Nozzle Outlet Orifice for Liquid Micro-Jet Focusing in Gas Dynamic Virtual Nozzles. Materials, 14.
999 C 5 |a 10.1016/j.ijmultiphaseflow.2018.03.003
|9 -- missing cx lookup --
|1 Zahoor
|p 152 -
|2 Crossref
|t Int. J. Multiph. Flow
|v 104
|y 2018
999 C 5 |a 10.1007/s10404-018-2110-0
|9 -- missing cx lookup --
|1 Zahoor
|p 87 -
|2 Crossref
|t Microfluid. Nanofluidics
|v 22
|y 2018
999 C 5 |a 10.1088/1742-6596/2766/1/012069
|9 -- missing cx lookup --
|1 Zahoor
|p 012069 -
|2 Crossref
|t J. Phys. Conf. Ser.
|v 2766
|y 2024
999 C 5 |a 10.1016/j.ijmultiphaseflow.2021.103666
|9 -- missing cx lookup --
|1 Bajt
|p 103666 -
|2 Crossref
|t Int. J. Multiph. Flow
|v 140
|y 2021
999 C 5 |a 10.1515/9781400885800
|9 -- missing cx lookup --
|2 Crossref
|u Chambre, P.A., and Schaaf, S.A. (1961). Flow of Rarefied Gases, Princeton University Press.
999 C 5 |a 10.1007/s00193-018-0881-6
|9 -- missing cx lookup --
|1 Liu
|p 1083 -
|2 Crossref
|t Shock. Waves
|v 29
|y 2019
999 C 5 |2 Crossref
|u Liu, C., Xu, K., and Zhou, G. (2018). Cell Size Effect on Computational Fluid Dynamics: The Limitation Principle for Flow Simulation. arXiv.
999 C 5 |a 10.1007/s12369-017-0434-7
|9 -- missing cx lookup --
|1 Ghorbel
|p 131 -
|2 Crossref
|t Int. J. Soc. Robot.
|v 10
|y 2018
999 C 5 |a 10.1063/1.4961688
|9 -- missing cx lookup --
|1 Sengupta
|p 094102 -
|2 Crossref
|t Phys. Fluids
|v 28
|y 2016
999 C 5 |a 10.1063/1.5111062
|9 -- missing cx lookup --
|1 Chen
|p 085115 -
|2 Crossref
|t Phys. Fluids
|v 31
|y 2019
999 C 5 |2 Crossref
|u Lin, J., Scalo, C., and Hesselink, L. (2017). Bulk Viscosity Model for Near-Equilibrium Acoustic Wave Attenuation. arXiv.
999 C 5 |a 10.1007/s00707-015-1380-9
|9 -- missing cx lookup --
|1 Buresti
|p 3555 -
|2 Crossref
|t Acta Mech.
|v 226
|y 2015
999 C 5 |a 10.1103/PhysRevE.100.013309
|9 -- missing cx lookup --
|1 Sharma
|p 013309 -
|2 Crossref
|t Phys. Rev. E
|v 100
|y 2019
999 C 5 |a 10.1103/PhysRevA.69.033814
|9 -- missing cx lookup --
|1 Pan
|p 033814 -
|2 Crossref
|t Phys. Rev. A
|v 69
|y 2004
999 C 5 |a 10.1017/jfm.2017.598
|9 -- missing cx lookup --
|1 Pan
|p 717 -
|2 Crossref
|t J. Fluid. Mech.
|v 833
|y 2017
999 C 5 |a 10.1016/j.euromechflu.2019.02.005
|9 -- missing cx lookup --
|1 Boukharfane
|p 32 -
|2 Crossref
|t Eur. J. Mech. B/Fluids
|v 77
|y 2019
999 C 5 |a 10.1016/0031-8914(73)90048-7
|9 -- missing cx lookup --
|1 Prangsma
|p 278 -
|2 Crossref
|t Physica
|v 64
|y 1973
999 C 5 |a 10.1063/1.857813
|9 -- missing cx lookup --
|1 Emanuel
|p 2252 -
|2 Crossref
|t Phys. Fluids A Fluid. Dyn.
|v 2
|y 1990
999 C 5 |a 10.1103/PhysRev.61.531
|9 -- missing cx lookup --
|1 Tisza
|p 531 -
|2 Crossref
|t Phys. Rev.
|v 61
|y 1942
999 C 5 |2 Crossref
|u Kim, Y.J., Kim, Y.-J., and Han, J.-G. (2004). Numerical Analysis of Flow Characteristics of an Atmospheric Plasma Torch. arXiv.
999 C 5 |2 Crossref
|u ANSYS (2021). ANSYS Fluent Theory Guide 2021R1, ANSYS, Inc.
999 C 5 |a 10.1002/047002903X
|9 -- missing cx lookup --
|2 Crossref
|u Matteucci, S., Yampolskii, Y., Freeman, B.D., and Pinnau, I. (2006). Transport of Gases and Vapors in Glassy and Rubbery Polymers. Materials Science of Membranes for Gas and Vapor Separation, Wiley.
999 C 5 |a 10.1146/annurev.fluid.29.1.123
|9 -- missing cx lookup --
|1 Roache
|p 123 -
|2 Crossref
|t Annu. Rev. Fluid. Mech.
|v 29
|y 1997
999 C 5 |a 10.1115/1.2960953
|9 -- missing cx lookup --
|1 Celik
|p 078001 -
|2 Crossref
|t J. Fluids Eng.
|v 130
|y 2008
999 C 5 |a 10.3389/fmolb.2023.1006733
|9 -- missing cx lookup --
|2 Crossref
|u Zupan, B., Peña-Murillo, G.E., Zahoor, R., Gregorc, J., Šarler, B., Knoška, J., Gañán-Calvo, A.M., Chapman, H.N., and Bajt, S. (2023). An Experimental Study of Liquid Micro-Jets Produced with a Gas Dynamic Virtual Nozzle under the Influence of an Electric Field. Front. Mol. Biosci., 10.


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21