Home > Publications database > Numerical analysis of Knudsen number of helium flow through gas-focused liquid sheet micro-nozzle > print |
001 | 615592 | ||
005 | 20250715171400.0 | ||
024 | 7 | _ | |a 10.3390/fluids9120273 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-06199 |2 datacite_doi |
024 | 7 | _ | |a WOS:001392345600001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4404613146 |
037 | _ | _ | |a PUBDB-2024-06199 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Kovačič, Krištof |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Numerical analysis of Knudsen number of helium flow through gas-focused liquid sheet micro-nozzle |
260 | _ | _ | |a Belgrade |c 2024 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1732712805_712646 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This work aims to verify whether the continuum mechanics assumption holds for the numerical simulation of a typical sample delivery system in Serial Femtosecond Crystallography (SFX). Knudsen numbers were calculated based on the numerical simulation results of helium flow through the gas-focused liquid sheet nozzle into the vacuum chamber, representing the upper limit of Knudsen number for such systems. The analysed flow is considered steady, compressible and laminar. The numerical results are mesh-independent, with a Grid Convergence Index signifi-cantly lower than 1 % for global and local analysis. The study is based on an improved definition of the numerical Knudsen number, a combination of cell Knudsen number and physical Knudsen number. In the analysis, no-slip boundary and low-pressure boundary slip conditions are com-pared. No significant differences are observed. The study justifies using computational fluid dy-namics (CFD) analysis for SFX sample delivery systems based on the assumption of continuum mechanics. |
536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994) |0 G:(GEPRIS)390715994 |c 390715994 |x 1 |
536 | _ | _ | |a DFG project G:(GEPRIS)194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731) |0 G:(GEPRIS)194651731 |c 194651731 |x 2 |
542 | _ | _ | |i 2024-11-22 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Bajt, Sasa |0 P:(DE-H253)PIP1006443 |b 1 |
700 | 1 | _ | |a Sarler, Bozidar |0 P:(DE-H253)PIP1087069 |b 2 |e Corresponding author |
773 | 1 | 8 | |a 10.3390/fluids9120273 |b MDPI AG |d 2024-11-22 |n 12 |p 273 |3 journal-article |2 Crossref |t Fluids |v 9 |y 2024 |x 2311-5521 |
773 | _ | _ | |a 10.3390/fluids9120273 |g Vol. 9, no. 12, p. 273 - |0 PERI:(DE-600)2882362-X |n 12 |p 273 |t Fluids |v 9 |y 2024 |x 2311-5521 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/615592/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/615592/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/615592/files/fluids-09-00273-v2.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/615592/files/fluids-09-00273-v2.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:615592 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1006443 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 1 |6 P:(DE-H253)PIP1006443 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1006443 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1087069 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1087069 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:28:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:28:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-10T15:28:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2025-01-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-03 |
920 | 1 | _ | |0 I:(DE-H253)FS-ML-20120731 |k FS-ML |l FS-Arbeitsgruppe |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-ML-20120731 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/nature09750 |9 -- missing cx lookup -- |1 Chapman |p 73 - |2 Crossref |t Nature |v 470 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevLett.80.285 |9 -- missing cx lookup -- |p 285 - |2 Crossref |t Phys. Rev. Lett. |v 80 |y 1998 |
999 | C | 5 | |a 10.1088/0022-3727/41/19/195505 |9 -- missing cx lookup -- |1 DePonte |p 195505 - |2 Crossref |t J. Phys. D Appl. Phys. |v 41 |y 2008 |
999 | C | 5 | |a 10.1063/1.4936843 |9 -- missing cx lookup -- |1 Beyerlein |p 125104 - |2 Crossref |t Rev. Sci. Instrum. |v 86 |y 2015 |
999 | C | 5 | |a 10.1098/rstb.2013.0337 |9 -- missing cx lookup -- |2 Crossref |u Weierstall, U. (2014). Liquid Sample Delivery Techniques for Serial Femtosecond Crystallography. Philos. Trans. R. Soc. B Biol. Sci., 369. |
999 | C | 5 | |a 10.1107/S1600577519000894 |9 -- missing cx lookup -- |1 Schulz |p 339 - |2 Crossref |t J. Synchrotron Radiat. |v 26 |y 2019 |
999 | C | 5 | |a 10.1364/OE.22.014135 |9 -- missing cx lookup -- |1 Kondoh |p 14135 - |2 Crossref |t Opt. Express |v 22 |y 2014 |
999 | C | 5 | |a 10.1063/1.4928715 |9 -- missing cx lookup -- |1 Ekimova |p 054301 - |2 Crossref |t Struct. Dyn. |v 2 |y 2015 |
999 | C | 5 | |a 10.1063/1.4990130 |9 -- missing cx lookup -- |1 Galinis |p 083117 - |2 Crossref |t Rev. Sci. Instrum. |v 88 |y 2017 |
999 | C | 5 | |a 10.3389/fmolb.2022.1044610 |9 -- missing cx lookup -- |2 Crossref |u Barnard, J.C.T., Lee, J.P., Alexander, O., Jarosch, S., Garratt, D., Picciuto, R., Kowalczyk, K., Ferchaud, C., Gregory, A., and Matthews, M. (2022). Delivery of Stable Ultra-Thin Liquid Sheets in Vacuum for Biochemical Spectroscopy. Front. Mol. Biosci., 9. |
999 | C | 5 | |2 Crossref |u Buchmann, A., Hoberg, C., and Havenith, M. (September, January 28). Improvements in Windowless Spectroscopy: 3D Printed Nozzles. Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Delft, The Netherlands. |
999 | C | 5 | |a 10.1088/2515-7647/abb0ef |9 -- missing cx lookup -- |1 Yin |p 044007 - |2 Crossref |t J. Phys. Photon. |v 2 |y 2020 |
999 | C | 5 | |a 10.3389/fmolb.2022.1048932 |9 -- missing cx lookup -- |2 Crossref |u Hoffman, D.J., van Driel, T.B., Kroll, T., Crissman, C.J., Ryland, E.S., Nelson, K.J., Cordones, A.A., Koralek, J.D., and DePonte, D.P. (2022). Microfluidic Liquid Sheets as Large-Area Targets for High Repetition XFELs. Front. Mol. Biosci., 9. |
999 | C | 5 | |a 10.1063/4.0000139 |9 -- missing cx lookup -- |1 Chang |p 014901 - |2 Crossref |t Struct. Dyn. |v 9 |y 2022 |
999 | C | 5 | |a 10.1063/1.4993755 |9 -- missing cx lookup -- |1 Fondell |p 054902 - |2 Crossref |t Struct. Dyn. |v 4 |y 2017 |
999 | C | 5 | |a 10.1017/hpl.2019.35 |9 -- missing cx lookup -- |1 George |p e50 - |2 Crossref |t High Power Laser Sci. Eng. |v 7 |y 2019 |
999 | C | 5 | |a 10.1038/s41467-018-06040-4 |9 -- missing cx lookup -- |1 Luu |p 3723 - |2 Crossref |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1021/acs.jpclett.9b03559 |9 -- missing cx lookup -- |1 Smith |p 1981 - |2 Crossref |t J. Phys. Chem. Lett. |v 11 |y 2020 |
999 | C | 5 | |a 10.1038/s41467-018-03696-w |9 -- missing cx lookup -- |1 Koralek |p 1353 - |2 Crossref |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1107/S2052252523007972 |9 -- missing cx lookup -- |1 Konold |p 662 - |2 Crossref |t IUCrJ |v 10 |y 2023 |
999 | C | 5 | |a 10.1039/D0CP06045C |9 -- missing cx lookup -- |1 Yang |p 1308 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 23 |y 2021 |
999 | C | 5 | |a 10.1063/1.5144518 |9 -- missing cx lookup -- |1 Nunes |p 024301 - |2 Crossref |t Struct. Dyn. |v 7 |y 2020 |
999 | C | 5 | |a 10.3390/ma14061572 |9 -- missing cx lookup -- |2 Crossref |u Šarler, B., Zahoor, R., and Bajt, S. (2021). Alternative Geometric Arrangements of the Nozzle Outlet Orifice for Liquid Micro-Jet Focusing in Gas Dynamic Virtual Nozzles. Materials, 14. |
999 | C | 5 | |a 10.1016/j.ijmultiphaseflow.2018.03.003 |9 -- missing cx lookup -- |1 Zahoor |p 152 - |2 Crossref |t Int. J. Multiph. Flow |v 104 |y 2018 |
999 | C | 5 | |a 10.1007/s10404-018-2110-0 |9 -- missing cx lookup -- |1 Zahoor |p 87 - |2 Crossref |t Microfluid. Nanofluidics |v 22 |y 2018 |
999 | C | 5 | |a 10.1088/1742-6596/2766/1/012069 |9 -- missing cx lookup -- |1 Zahoor |p 012069 - |2 Crossref |t J. Phys. Conf. Ser. |v 2766 |y 2024 |
999 | C | 5 | |a 10.1016/j.ijmultiphaseflow.2021.103666 |9 -- missing cx lookup -- |1 Bajt |p 103666 - |2 Crossref |t Int. J. Multiph. Flow |v 140 |y 2021 |
999 | C | 5 | |a 10.1515/9781400885800 |9 -- missing cx lookup -- |2 Crossref |u Chambre, P.A., and Schaaf, S.A. (1961). Flow of Rarefied Gases, Princeton University Press. |
999 | C | 5 | |a 10.1007/s00193-018-0881-6 |9 -- missing cx lookup -- |1 Liu |p 1083 - |2 Crossref |t Shock. Waves |v 29 |y 2019 |
999 | C | 5 | |2 Crossref |u Liu, C., Xu, K., and Zhou, G. (2018). Cell Size Effect on Computational Fluid Dynamics: The Limitation Principle for Flow Simulation. arXiv. |
999 | C | 5 | |a 10.1007/s12369-017-0434-7 |9 -- missing cx lookup -- |1 Ghorbel |p 131 - |2 Crossref |t Int. J. Soc. Robot. |v 10 |y 2018 |
999 | C | 5 | |a 10.1063/1.4961688 |9 -- missing cx lookup -- |1 Sengupta |p 094102 - |2 Crossref |t Phys. Fluids |v 28 |y 2016 |
999 | C | 5 | |a 10.1063/1.5111062 |9 -- missing cx lookup -- |1 Chen |p 085115 - |2 Crossref |t Phys. Fluids |v 31 |y 2019 |
999 | C | 5 | |2 Crossref |u Lin, J., Scalo, C., and Hesselink, L. (2017). Bulk Viscosity Model for Near-Equilibrium Acoustic Wave Attenuation. arXiv. |
999 | C | 5 | |a 10.1007/s00707-015-1380-9 |9 -- missing cx lookup -- |1 Buresti |p 3555 - |2 Crossref |t Acta Mech. |v 226 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevE.100.013309 |9 -- missing cx lookup -- |1 Sharma |p 013309 - |2 Crossref |t Phys. Rev. E |v 100 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevA.69.033814 |9 -- missing cx lookup -- |1 Pan |p 033814 - |2 Crossref |t Phys. Rev. A |v 69 |y 2004 |
999 | C | 5 | |a 10.1017/jfm.2017.598 |9 -- missing cx lookup -- |1 Pan |p 717 - |2 Crossref |t J. Fluid. Mech. |v 833 |y 2017 |
999 | C | 5 | |a 10.1016/j.euromechflu.2019.02.005 |9 -- missing cx lookup -- |1 Boukharfane |p 32 - |2 Crossref |t Eur. J. Mech. B/Fluids |v 77 |y 2019 |
999 | C | 5 | |a 10.1016/0031-8914(73)90048-7 |9 -- missing cx lookup -- |1 Prangsma |p 278 - |2 Crossref |t Physica |v 64 |y 1973 |
999 | C | 5 | |a 10.1063/1.857813 |9 -- missing cx lookup -- |1 Emanuel |p 2252 - |2 Crossref |t Phys. Fluids A Fluid. Dyn. |v 2 |y 1990 |
999 | C | 5 | |a 10.1103/PhysRev.61.531 |9 -- missing cx lookup -- |1 Tisza |p 531 - |2 Crossref |t Phys. Rev. |v 61 |y 1942 |
999 | C | 5 | |2 Crossref |u Kim, Y.J., Kim, Y.-J., and Han, J.-G. (2004). Numerical Analysis of Flow Characteristics of an Atmospheric Plasma Torch. arXiv. |
999 | C | 5 | |2 Crossref |u ANSYS (2021). ANSYS Fluent Theory Guide 2021R1, ANSYS, Inc. |
999 | C | 5 | |a 10.1002/047002903X |9 -- missing cx lookup -- |2 Crossref |u Matteucci, S., Yampolskii, Y., Freeman, B.D., and Pinnau, I. (2006). Transport of Gases and Vapors in Glassy and Rubbery Polymers. Materials Science of Membranes for Gas and Vapor Separation, Wiley. |
999 | C | 5 | |a 10.1146/annurev.fluid.29.1.123 |9 -- missing cx lookup -- |1 Roache |p 123 - |2 Crossref |t Annu. Rev. Fluid. Mech. |v 29 |y 1997 |
999 | C | 5 | |a 10.1115/1.2960953 |9 -- missing cx lookup -- |1 Celik |p 078001 - |2 Crossref |t J. Fluids Eng. |v 130 |y 2008 |
999 | C | 5 | |a 10.3389/fmolb.2023.1006733 |9 -- missing cx lookup -- |2 Crossref |u Zupan, B., Peña-Murillo, G.E., Zahoor, R., Gregorc, J., Šarler, B., Knoška, J., Gañán-Calvo, A.M., Chapman, H.N., and Bajt, S. (2023). An Experimental Study of Liquid Micro-Jets Produced with a Gas Dynamic Virtual Nozzle under the Influence of an Electric Field. Front. Mol. Biosci., 10. |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|