001     614367
005     20250723172403.0
024 7 _ |a 10.3390/jmmp8030103
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-05845
|2 datacite_doi
024 7 _ |a WOS:001256568400001
|2 WOS
024 7 _ |a openalex:W4397003997
|2 openalex
037 _ _ |a PUBDB-2024-05845
082 _ _ |a 650
100 1 _ |a ye, jihui
|0 P:(DE-H253)PIP1101361
|b 0
|e Corresponding author
245 _ _ |a Revealing the Mechanisms of Smoke during Electron Beam–Powder Bed Fusion by High-Speed Synchrotron Radiography
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1728476813_1932498
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The financial support provided by the German Research Foundation (DFG) for the project(FU 1283/2-1) is gratefully acknowledged
520 _ _ |a Electron beam–powder bed fusion (PBF-EB) is an additive manufacturing process that utilizes an electron beam as the heat source to enable material fusion. However, the use of a charge-carrying heat source can sometimes result in sudden powder explosions, usually referred to as “Smoke”, which can lead to process instability or termination. This experimental study investigated the initiation and propagation of Smoke using in situ high-speed synchrotron radiography. The results reveal two key mechanisms for Smoke evolution. In the first step, the beam–powder bed interaction creates electrically isolated particles in the atmosphere. Subsequently, these isolated particles get charged either by direct irradiation by the beam or indirectly by back-scattered electrons. These particles are accelerated by electric repulsion, and new particles in the atmosphere are produced when they impinge on the powder bed. This is the onset of the avalanche process known as Smoke. Based on this understanding, the dependence of Smoke on process parameters such as beam returning time, beam diameter, etc., can be rationalized.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: II-20220735 EC (II-20220735-EC)
|0 G:(DE-H253)II-20220735-EC
|c II-20220735-EC
|x 1
542 _ _ |i 2024-05-17
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P61.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P61.1-20150101
|6 EXP:(DE-H253)P-P61.1-20150101
|x 0
700 1 _ |a Semjatov, Nick
|0 P:(DE-H253)PIP1094199
|b 1
700 1 _ |a Bidola, Pidassa
|0 P:(DE-H253)PIP1017023
|b 2
700 1 _ |a Lindwall, Greta
|0 P:(DE-H253)PIP1094432
|b 3
700 1 _ |a Koerner, Carolin
|0 P:(DE-H253)PIP1031443
|b 4
|e Corresponding author
773 1 8 |a 10.3390/jmmp8030103
|b MDPI AG
|d 2024-05-17
|n 3
|p 103
|3 journal-article
|2 Crossref
|t Journal of Manufacturing and Materials Processing
|v 8
|y 2024
|x 2504-4494
773 _ _ |a 10.3390/jmmp8030103
|g Vol. 8, no. 3, p. 103 -
|0 PERI:(DE-600)2911715-X
|n 3
|p 103
|t Journal of manufacturing and materials processing
|v 8
|y 2024
|x 2504-4494
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/614367/files/jmmp-08-00103.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/614367/files/jmmp-08-00103.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:614367
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1101361
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1094199
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1017023
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1094432
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1031443
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MANUF MATER PROC : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:27:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:27:03Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:27:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-01
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)Hereon-20210428
|k Hereon
|l Helmholtz-Zentrum Hereon
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)Hereon-20210428
980 1 _ |a FullTexts
999 C 5 |2 Crossref
|u Eschey, C., Lutzmann, S., and Zaeh, M.F. (2009). 2006 International Solid Freeform Fabrication Symposium, University of Texas at Austin.
999 C 5 |2 Crossref
|u Sigl, M., Lutzmann, S., and Zaeh, M.F. (2006). 2006 International Solid Freeform Fabrication Symposium, University of Texas at Austin.
999 C 5 |a 10.1080/26889277.2022.2040342
|9 -- missing cx lookup --
|1 Fu
|p 54 -
|2 Crossref
|t Eur. J. Mater.
|v 2
|y 2022
999 C 5 |2 Crossref
|u Ljungblad, U. (2022). Radiation Method for Additive Manufacturing. (US11534963B2), U.S. Patent, Available online: https://patents.google.com/patent/US11534963B2/en?oq=us+11534963.
999 C 5 |2 Crossref
|u Van Den Berg, J.A., Hussey, M.J., Richardson, W.T., and Laidler, I. (2020). Additive Layer Manufacture Using Charged Particle Beams. (US10879039B2), U.S. Patent, Available online: https://patents.google.com/patent/US10879039B2/en?oq=US10879039B2.
999 C 5 |a 10.3390/ma14164662
|9 -- missing cx lookup --
|2 Crossref
|u Chiba, A., Daino, Y., Aoyagi, K., and Yamanaka, K. (2021). Smoke Suppression in Electron Beam Melting of Inconel 718 Alloy Powder Based on Insulator–Metal Transition of Surface Oxide Film by Mechanical Stimulation. Materials, 14.
999 C 5 |a 10.1016/j.actamat.2016.11.012
|9 -- missing cx lookup --
|1 Cordero
|p 437 -
|2 Crossref
|t Acta Mater.
|v 124
|y 2017
999 C 5 |a 10.1016/j.jmst.2022.07.024
|9 -- missing cx lookup --
|1 Yim
|p 36 -
|2 Crossref
|t J. Mater. Sci. Technol.
|v 137
|y 2023
999 C 5 |1 Wang
|y 2023
|2 Crossref
|o Wang 2023
999 C 5 |1 Ye
|y 2023
|2 Crossref
|o Ye 2023
999 C 5 |a 10.1063/5.0177255
|9 -- missing cx lookup --
|1 Semjatov
|p 125103 -
|2 Crossref
|t Rev. Sci. Instrum.
|v 94
|y 2023
999 C 5 |a 10.1107/S1600577522001047
|9 -- missing cx lookup --
|1 Farla
|p 409 -
|2 Crossref
|t J. Synchrotron Radiat.
|v 29
|y 2022
999 C 5 |a 10.1038/s41467-018-03734-7
|9 -- missing cx lookup --
|1 Leung
|p 1355 -
|2 Crossref
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1107/S1600577518009554
|9 -- missing cx lookup --
|1 Parab
|p 1467 -
|2 Crossref
|t J. Synchrotron Radiat.
|v 25
|y 2018
999 C 5 |a 10.1016/j.matdes.2022.110790
|9 -- missing cx lookup --
|1 Ioannidou
|p 110790 -
|2 Crossref
|t Mater. Des.
|v 219
|y 2022
999 C 5 |a 10.1016/j.jmapro.2022.08.063
|9 -- missing cx lookup --
|1 Lin
|p 180 -
|2 Crossref
|t J. Manuf. Process.
|v 83
|y 2022
999 C 5 |a 10.1016/j.actamat.2018.03.036
|9 -- missing cx lookup --
|1 Guo
|p 169 -
|2 Crossref
|t Acta Mater.
|v 151
|y 2018
999 C 5 |a 10.1002/pssa.2210590104
|9 -- missing cx lookup --
|1 Neubert
|p 35 -
|2 Crossref
|t Phys. Status Solidi
|v 59
|y 1980
999 C 5 |a 10.1007/978-3-540-38967-5
|9 -- missing cx lookup --
|2 Crossref
|u Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Springer.
999 C 5 |a 10.1243/09544054JEM438
|9 -- missing cx lookup --
|1 Qi
|p 1845 -
|2 Crossref
|t Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
|v 220
|y 2006


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21