Home > Publications database > Revealing the Mechanisms of Smoke during Electron Beam–Powder Bed Fusion by High-Speed Synchrotron Radiography > print |
001 | 614367 | ||
005 | 20250723172403.0 | ||
024 | 7 | _ | |a 10.3390/jmmp8030103 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-05845 |2 datacite_doi |
024 | 7 | _ | |a WOS:001256568400001 |2 WOS |
024 | 7 | _ | |a openalex:W4397003997 |2 openalex |
037 | _ | _ | |a PUBDB-2024-05845 |
082 | _ | _ | |a 650 |
100 | 1 | _ | |a ye, jihui |0 P:(DE-H253)PIP1101361 |b 0 |e Corresponding author |
245 | _ | _ | |a Revealing the Mechanisms of Smoke during Electron Beam–Powder Bed Fusion by High-Speed Synchrotron Radiography |
260 | _ | _ | |a Basel |c 2024 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1728476813_1932498 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a The financial support provided by the German Research Foundation (DFG) for the project(FU 1283/2-1) is gratefully acknowledged |
520 | _ | _ | |a Electron beam–powder bed fusion (PBF-EB) is an additive manufacturing process that utilizes an electron beam as the heat source to enable material fusion. However, the use of a charge-carrying heat source can sometimes result in sudden powder explosions, usually referred to as “Smoke”, which can lead to process instability or termination. This experimental study investigated the initiation and propagation of Smoke using in situ high-speed synchrotron radiography. The results reveal two key mechanisms for Smoke evolution. In the first step, the beam–powder bed interaction creates electrically isolated particles in the atmosphere. Subsequently, these isolated particles get charged either by direct irradiation by the beam or indirectly by back-scattered electrons. These particles are accelerated by electric repulsion, and new particles in the atmosphere are produced when they impinge on the powder bed. This is the onset of the avalanche process known as Smoke. Based on this understanding, the dependence of Smoke on process parameters such as beam returning time, beam diameter, etc., can be rationalized. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a FS-Proposal: II-20220735 EC (II-20220735-EC) |0 G:(DE-H253)II-20220735-EC |c II-20220735-EC |x 1 |
542 | _ | _ | |i 2024-05-17 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P61.1 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P61.1-20150101 |6 EXP:(DE-H253)P-P61.1-20150101 |x 0 |
700 | 1 | _ | |a Semjatov, Nick |0 P:(DE-H253)PIP1094199 |b 1 |
700 | 1 | _ | |a Bidola, Pidassa |0 P:(DE-H253)PIP1017023 |b 2 |
700 | 1 | _ | |a Lindwall, Greta |0 P:(DE-H253)PIP1094432 |b 3 |
700 | 1 | _ | |a Koerner, Carolin |0 P:(DE-H253)PIP1031443 |b 4 |e Corresponding author |
773 | 1 | 8 | |a 10.3390/jmmp8030103 |b MDPI AG |d 2024-05-17 |n 3 |p 103 |3 journal-article |2 Crossref |t Journal of Manufacturing and Materials Processing |v 8 |y 2024 |x 2504-4494 |
773 | _ | _ | |a 10.3390/jmmp8030103 |g Vol. 8, no. 3, p. 103 - |0 PERI:(DE-600)2911715-X |n 3 |p 103 |t Journal of manufacturing and materials processing |v 8 |y 2024 |x 2504-4494 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/614367/files/jmmp-08-00103.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/614367/files/jmmp-08-00103.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:614367 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1101361 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1094199 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1017023 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1094432 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1031443 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-22 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MANUF MATER PROC : 2022 |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:27:03Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:27:03Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-10T15:27:03Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-01 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-01 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-01 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)Hereon-20210428 |k Hereon |l Helmholtz-Zentrum Hereon |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)Hereon-20210428 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |2 Crossref |u Eschey, C., Lutzmann, S., and Zaeh, M.F. (2009). 2006 International Solid Freeform Fabrication Symposium, University of Texas at Austin. |
999 | C | 5 | |2 Crossref |u Sigl, M., Lutzmann, S., and Zaeh, M.F. (2006). 2006 International Solid Freeform Fabrication Symposium, University of Texas at Austin. |
999 | C | 5 | |a 10.1080/26889277.2022.2040342 |9 -- missing cx lookup -- |1 Fu |p 54 - |2 Crossref |t Eur. J. Mater. |v 2 |y 2022 |
999 | C | 5 | |2 Crossref |u Ljungblad, U. (2022). Radiation Method for Additive Manufacturing. (US11534963B2), U.S. Patent, Available online: https://patents.google.com/patent/US11534963B2/en?oq=us+11534963. |
999 | C | 5 | |2 Crossref |u Van Den Berg, J.A., Hussey, M.J., Richardson, W.T., and Laidler, I. (2020). Additive Layer Manufacture Using Charged Particle Beams. (US10879039B2), U.S. Patent, Available online: https://patents.google.com/patent/US10879039B2/en?oq=US10879039B2. |
999 | C | 5 | |a 10.3390/ma14164662 |9 -- missing cx lookup -- |2 Crossref |u Chiba, A., Daino, Y., Aoyagi, K., and Yamanaka, K. (2021). Smoke Suppression in Electron Beam Melting of Inconel 718 Alloy Powder Based on Insulator–Metal Transition of Surface Oxide Film by Mechanical Stimulation. Materials, 14. |
999 | C | 5 | |a 10.1016/j.actamat.2016.11.012 |9 -- missing cx lookup -- |1 Cordero |p 437 - |2 Crossref |t Acta Mater. |v 124 |y 2017 |
999 | C | 5 | |a 10.1016/j.jmst.2022.07.024 |9 -- missing cx lookup -- |1 Yim |p 36 - |2 Crossref |t J. Mater. Sci. Technol. |v 137 |y 2023 |
999 | C | 5 | |1 Wang |y 2023 |2 Crossref |o Wang 2023 |
999 | C | 5 | |1 Ye |y 2023 |2 Crossref |o Ye 2023 |
999 | C | 5 | |a 10.1063/5.0177255 |9 -- missing cx lookup -- |1 Semjatov |p 125103 - |2 Crossref |t Rev. Sci. Instrum. |v 94 |y 2023 |
999 | C | 5 | |a 10.1107/S1600577522001047 |9 -- missing cx lookup -- |1 Farla |p 409 - |2 Crossref |t J. Synchrotron Radiat. |v 29 |y 2022 |
999 | C | 5 | |a 10.1038/s41467-018-03734-7 |9 -- missing cx lookup -- |1 Leung |p 1355 - |2 Crossref |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1107/S1600577518009554 |9 -- missing cx lookup -- |1 Parab |p 1467 - |2 Crossref |t J. Synchrotron Radiat. |v 25 |y 2018 |
999 | C | 5 | |a 10.1016/j.matdes.2022.110790 |9 -- missing cx lookup -- |1 Ioannidou |p 110790 - |2 Crossref |t Mater. Des. |v 219 |y 2022 |
999 | C | 5 | |a 10.1016/j.jmapro.2022.08.063 |9 -- missing cx lookup -- |1 Lin |p 180 - |2 Crossref |t J. Manuf. Process. |v 83 |y 2022 |
999 | C | 5 | |a 10.1016/j.actamat.2018.03.036 |9 -- missing cx lookup -- |1 Guo |p 169 - |2 Crossref |t Acta Mater. |v 151 |y 2018 |
999 | C | 5 | |a 10.1002/pssa.2210590104 |9 -- missing cx lookup -- |1 Neubert |p 35 - |2 Crossref |t Phys. Status Solidi |v 59 |y 1980 |
999 | C | 5 | |a 10.1007/978-3-540-38967-5 |9 -- missing cx lookup -- |2 Crossref |u Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Springer. |
999 | C | 5 | |a 10.1243/09544054JEM438 |9 -- missing cx lookup -- |1 Qi |p 1845 - |2 Crossref |t Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. |v 220 |y 2006 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|