000614367 001__ 614367
000614367 005__ 20250723172403.0
000614367 0247_ $$2doi$$a10.3390/jmmp8030103
000614367 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05845
000614367 0247_ $$2WOS$$aWOS:001256568400001
000614367 0247_ $$2openalex$$aopenalex:W4397003997
000614367 037__ $$aPUBDB-2024-05845
000614367 082__ $$a650
000614367 1001_ $$0P:(DE-H253)PIP1101361$$aye, jihui$$b0$$eCorresponding author
000614367 245__ $$aRevealing the Mechanisms of Smoke during Electron Beam–Powder Bed Fusion by High-Speed Synchrotron Radiography
000614367 260__ $$aBasel$$bMDPI$$c2024
000614367 3367_ $$2DRIVER$$aarticle
000614367 3367_ $$2DataCite$$aOutput Types/Journal article
000614367 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728476813_1932498
000614367 3367_ $$2BibTeX$$aARTICLE
000614367 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000614367 3367_ $$00$$2EndNote$$aJournal Article
000614367 500__ $$aThe financial support provided by the German Research Foundation (DFG) for the project(FU 1283/2-1) is gratefully acknowledged
000614367 520__ $$aElectron beam–powder bed fusion (PBF-EB) is an additive manufacturing process that utilizes an electron beam as the heat source to enable material fusion. However, the use of a charge-carrying heat source can sometimes result in sudden powder explosions, usually referred to as “Smoke”, which can lead to process instability or termination. This experimental study investigated the initiation and propagation of Smoke using in situ high-speed synchrotron radiography. The results reveal two key mechanisms for Smoke evolution. In the first step, the beam–powder bed interaction creates electrically isolated particles in the atmosphere. Subsequently, these isolated particles get charged either by direct irradiation by the beam or indirectly by back-scattered electrons. These particles are accelerated by electric repulsion, and new particles in the atmosphere are produced when they impinge on the powder bed. This is the onset of the avalanche process known as Smoke. Based on this understanding, the dependence of Smoke on process parameters such as beam returning time, beam diameter, etc., can be rationalized.
000614367 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000614367 536__ $$0G:(DE-H253)II-20220735-EC$$aFS-Proposal: II-20220735 EC (II-20220735-EC)$$cII-20220735-EC$$x1
000614367 542__ $$2Crossref$$i2024-05-17$$uhttps://creativecommons.org/licenses/by/4.0/
000614367 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000614367 693__ $$0EXP:(DE-H253)P-P61.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P61.1-20150101$$aPETRA III$$fPETRA Beamline P61.1$$x0
000614367 7001_ $$0P:(DE-H253)PIP1094199$$aSemjatov, Nick$$b1
000614367 7001_ $$0P:(DE-H253)PIP1017023$$aBidola, Pidassa$$b2
000614367 7001_ $$0P:(DE-H253)PIP1094432$$aLindwall, Greta$$b3
000614367 7001_ $$0P:(DE-H253)PIP1031443$$aKoerner, Carolin$$b4$$eCorresponding author
000614367 77318 $$2Crossref$$3journal-article$$a10.3390/jmmp8030103$$bMDPI AG$$d2024-05-17$$n3$$p103$$tJournal of Manufacturing and Materials Processing$$v8$$x2504-4494$$y2024
000614367 773__ $$0PERI:(DE-600)2911715-X$$a10.3390/jmmp8030103$$gVol. 8, no. 3, p. 103 -$$n3$$p103$$tJournal of manufacturing and materials processing$$v8$$x2504-4494$$y2024
000614367 8564_ $$uhttps://bib-pubdb1.desy.de/record/614367/files/jmmp-08-00103.pdf$$yOpenAccess
000614367 8564_ $$uhttps://bib-pubdb1.desy.de/record/614367/files/jmmp-08-00103.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000614367 909CO $$ooai:bib-pubdb1.desy.de:614367$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000614367 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1101361$$aExternal Institute$$b0$$kExtern
000614367 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094199$$aExternal Institute$$b1$$kExtern
000614367 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017023$$aExternal Institute$$b2$$kExtern
000614367 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094432$$aExternal Institute$$b3$$kExtern
000614367 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1031443$$aExternal Institute$$b4$$kExtern
000614367 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000614367 9141_ $$y2024
000614367 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000614367 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000614367 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-22
000614367 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-22
000614367 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MANUF MATER PROC : 2022$$d2025-01-01
000614367 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000614367 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:27:03Z
000614367 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:27:03Z
000614367 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:27:03Z
000614367 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000614367 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-01
000614367 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000614367 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
000614367 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000614367 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x1
000614367 980__ $$ajournal
000614367 980__ $$aVDB
000614367 980__ $$aUNRESTRICTED
000614367 980__ $$aI:(DE-H253)HAS-User-20120731
000614367 980__ $$aI:(DE-H253)Hereon-20210428
000614367 9801_ $$aFullTexts
000614367 999C5 $$2Crossref$$uEschey, C., Lutzmann, S., and Zaeh, M.F. (2009). 2006 International Solid Freeform Fabrication Symposium, University of Texas at Austin.
000614367 999C5 $$2Crossref$$uSigl, M., Lutzmann, S., and Zaeh, M.F. (2006). 2006 International Solid Freeform Fabrication Symposium, University of Texas at Austin.
000614367 999C5 $$1Fu$$2Crossref$$9-- missing cx lookup --$$a10.1080/26889277.2022.2040342$$p54 -$$tEur. J. Mater.$$v2$$y2022
000614367 999C5 $$2Crossref$$uLjungblad, U. (2022). Radiation Method for Additive Manufacturing. (US11534963B2), U.S. Patent, Available online: https://patents.google.com/patent/US11534963B2/en?oq=us+11534963.
000614367 999C5 $$2Crossref$$uVan Den Berg, J.A., Hussey, M.J., Richardson, W.T., and Laidler, I. (2020). Additive Layer Manufacture Using Charged Particle Beams. (US10879039B2), U.S. Patent, Available online: https://patents.google.com/patent/US10879039B2/en?oq=US10879039B2.
000614367 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/ma14164662$$uChiba, A., Daino, Y., Aoyagi, K., and Yamanaka, K. (2021). Smoke Suppression in Electron Beam Melting of Inconel 718 Alloy Powder Based on Insulator–Metal Transition of Surface Oxide Film by Mechanical Stimulation. Materials, 14.
000614367 999C5 $$1Cordero$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2016.11.012$$p437 -$$tActa Mater.$$v124$$y2017
000614367 999C5 $$1Yim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmst.2022.07.024$$p36 -$$tJ. Mater. Sci. Technol.$$v137$$y2023
000614367 999C5 $$1Wang$$2Crossref$$oWang 2023$$y2023
000614367 999C5 $$1Ye$$2Crossref$$oYe 2023$$y2023
000614367 999C5 $$1Semjatov$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0177255$$p125103 -$$tRev. Sci. Instrum.$$v94$$y2023
000614367 999C5 $$1Farla$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577522001047$$p409 -$$tJ. Synchrotron Radiat.$$v29$$y2022
000614367 999C5 $$1Leung$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-03734-7$$p1355 -$$tNat. Commun.$$v9$$y2018
000614367 999C5 $$1Parab$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577518009554$$p1467 -$$tJ. Synchrotron Radiat.$$v25$$y2018
000614367 999C5 $$1Ioannidou$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matdes.2022.110790$$p110790 -$$tMater. Des.$$v219$$y2022
000614367 999C5 $$1Lin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmapro.2022.08.063$$p180 -$$tJ. Manuf. Process.$$v83$$y2022
000614367 999C5 $$1Guo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2018.03.036$$p169 -$$tActa Mater.$$v151$$y2018
000614367 999C5 $$1Neubert$$2Crossref$$9-- missing cx lookup --$$a10.1002/pssa.2210590104$$p35 -$$tPhys. Status Solidi$$v59$$y1980
000614367 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-540-38967-5$$uReimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Springer.
000614367 999C5 $$1Qi$$2Crossref$$9-- missing cx lookup --$$a10.1243/09544054JEM438$$p1845 -$$tProc. Inst. Mech. Eng. Part B J. Eng. Manuf.$$v220$$y2006