001     613907
005     20250723172327.0
024 7 _ |a 10.1038/s41564-024-01663-4
|2 doi
024 7 _ |a altmetric:162964040
|2 altmetric
024 7 _ |a pmid:38684911
|2 pmid
024 7 _ |a WOS:001209611400002
|2 WOS
024 7 _ |a openalex:W4396217051
|2 openalex
037 _ _ |a PUBDB-2024-05686
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Jensen, Mathias
|b 0
245 _ _ |a Akkermansia muciniphila exoglycosidases target extended blood group antigens to generate ABO-universal blood
260 _ _ |a London
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725266556_1114291
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a We acknowledge DESY for time on the P13 beamline at Petra III under the proposal MX846 and would like to thank I. Bento for assistance in using the beamline and data collection.the proposal MX846 and would like to thank I. Bento for assistance in using the beamline and data collection. Waiting for fulltext
520 _ _ |a Matching donor and recipient blood groups based on red blood cell (RBC) surface ABO glycans and antibodies in plasma is crucial to avoid potentially fatal reactions during transfusions. Enzymatic conversion of RBC glycans to the universal group O is an attractive solution to simplify blood logistics and prevent ABO-mismatched transfusions. The gut symbiont Akkermansia muciniphila can degrade mucin O-glycans including ABO epitopes. Here we biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions. Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analyses of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module. This study demonstrates the potential utility of mucin-degrading gut bacteria as valuable sources of enzymes for production of universal blood for transfusions.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20190334 (I-20190334)
|0 G:(DE-H253)I-20190334
|c I-20190334
|x 1
536 _ _ |a FS-Proposal: I-20200120 (I-20200120)
|0 G:(DE-H253)I-20200120
|c I-20200120
|x 2
542 _ _ |i 2024-04-29
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
542 _ _ |i 2024-04-29
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P13
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P13-20150101
|6 EXP:(DE-H253)P-P13-20150101
|x 0
700 1 _ |a Stenfelt, Linn
|0 0000-0003-0196-1367
|b 1
700 1 _ |a Ricci Hagman, Jennifer
|b 2
700 1 _ |a Pichler, Michael Jakob
|0 0000-0003-3408-652X
|b 3
700 1 _ |a Weikum, Julia
|b 4
700 1 _ |a Nielsen, Tine Sofie
|b 5
700 1 _ |a Hult, Annika
|b 6
700 1 _ |a Morth, Jens Preben
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Olsson, Martin L.
|0 0000-0003-1647-9610
|b 8
|e Corresponding author
700 1 _ |a Abou Hachem, Maher
|0 0000-0001-8250-1842
|b 9
|e Corresponding author
773 1 8 |a 10.1038/s41564-024-01663-4
|b Springer Science and Business Media LLC
|d 2024-04-29
|n 5
|p 1176-1188
|3 journal-article
|2 Crossref
|t Nature Microbiology
|v 9
|y 2024
|x 2058-5276
773 _ _ |a 10.1038/s41564-024-01663-4
|g Vol. 9, no. 5, p. 1176 - 1188
|0 PERI:(DE-600)2845610-5
|n 5
|p 1176-1188
|t Nature microbiology
|v 9
|y 2024
|x 2058-5276
856 4 _ |u https://www.nature.com/articles/s41564-024-01663-4
856 4 _ |u https://bib-pubdb1.desy.de/record/613907/files/Akkermansia%20muciniphila%20exoglycosidases%20target%20extended%20blood%20group%20antigens%20to%20generate%20ABO-universal%20blood.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/613907/files/Akkermansia%20muciniphila%20exoglycosidases%20target%20extended%20blood%20group%20antigens%20to%20generate%20ABO-universal%20blood.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:613907
|p VDB
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MICROBIOL : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT MICROBIOL : 2022
|d 2024-12-20
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a UNRESTRICTED
999 C 5 |2 Crossref
|u Blood Safety and Availability (World Health Organization, accessed 20 February 2024); www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability
999 C 5 |a 10.1002/9781118493595
|9 -- missing cx lookup --
|2 Crossref
|u Daniels, G. Human Blood Groups 3rd edn (John Wiley, 2013).
999 C 5 |1 H Clausen
|y 1989
|2 Crossref
|u Clausen, H. & Hakomori, S. ‐I. ABH and related histo‐blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang. 56, 1–20 (1989).
999 C 5 |a 10.1021/bi00844a005
|9 -- missing cx lookup --
|1 S Hakomori
|p 1279 -
|2 Crossref
|u Hakomori, S. & Strycharz, G. D. Cellular blood-group substances. I. Isolation and chemical composition of blood-group ABH and Leb isoantigens of sphingoglycolipid nature. Biochemistry 7, 1279–1286 (1968).
|t Biochemistry
|v 7
|y 1968
999 C 5 |a 10.1016/S0021-9258(17)34351-X
|9 -- missing cx lookup --
|2 Crossref
|u Jarnefelt, J., Rush, J., Li, Y. T. & Laine, R. A. Erythroglycan, a high molecular weight glycopeptide with the repeating structure [galactosyl-(1 leads to 4)-2-deoxy-2-acetamido-glucosyl(1 leads to 3)] comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stroma. J. Biol. Chem. 253, 8006–8009 (1978).
999 C 5 |a 10.1038/s41564-019-0548-9
|9 -- missing cx lookup --
|1 H Clausen
|p 1426 -
|2 Crossref
|u Clausen, H. & Olsson, M. L. Towards universally acceptable blood. Nat. Microbiol. 4, 1426–1427 (2019).
|t Nat. Microbiol.
|v 4
|y 2019
999 C 5 |a 10.1126/science.6274021
|9 -- missing cx lookup --
|1 J Goldstein
|p 168 -
|2 Crossref
|u Goldstein, J. et al. Group B erythrocytes enzymatically converted to group O survive normally in A, B and O individuals. Science 215, 168–170 (1982).
|t Science
|v 215
|y 1982
999 C 5 |a 10.1038/nbt1298
|9 -- missing cx lookup --
|1 QP Liu
|p 454 -
|2 Crossref
|u Liu, Q. P. et al. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25, 454–464 (2007).
|t Nat. Biotechnol.
|v 25
|y 2007
999 C 5 |a 10.1038/s41564-019-0469-7
|9 -- missing cx lookup --
|1 P Rahfeld
|p 1475 -
|2 Crossref
|u Rahfeld, P. et al. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat. Microbiol. 4, 1475–1485 (2019).
|t Nat. Microbiol.
|v 4
|y 2019
999 C 5 |a 10.1046/j.1537-2995.2000.40111290.x
|9 -- missing cx lookup --
|1 MS Kruskall
|p 1290 -
|2 Crossref
|u Kruskall, M. S. et al. Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion 40, 1290–1298 (2000).
|t Transfusion
|v 40
|y 2000
999 C 5 |a 10.1182/blood.V77.6.1383.1383
|9 -- missing cx lookup --
|1 LL Lenny
|p 1383 -
|2 Crossref
|u Lenny, L. L., Hurst, R., Goldstein, J., Benjamin, L. J. & Jones, R. L. Single-unit transfusions of RBC enzymatically converted from group B to group O to A and O normal volunteers. Blood 77, 1383–1388 (1991).
|t Blood
|v 77
|y 1991
999 C 5 |a 10.1046/j.1537-2995.1994.34394196617.x
|9 -- missing cx lookup --
|1 LL Lenny
|p 209 -
|2 Crossref
|u Lenny, L. L., Hurst, R. & Galbraith, R. A. Transfusions to group O subjects of 2 units of red cells enzymatically converted from group B to group O. Transfusion 34, 209–214 (1994).
|t Transfusion
|v 34
|y 1994
999 C 5 |a 10.1111/j.1365-2141.2007.06839.x
|9 -- missing cx lookup --
|1 ML Olsson
|p 3 -
|2 Crossref
|u Olsson, M. L. & Clausen, H. Modifying the red cell surface: towards an ABO-universal blood supply. Br. J. Haematol. 140, 3–12 (2008).
|t Br. J. Haematol.
|v 140
|y 2008
999 C 5 |a 10.1111/ajt.13328
|9 -- missing cx lookup --
|1 M Jeyakanthan
|p 2602 -
|2 Crossref
|u Jeyakanthan, M. et al. Chemical basis for qualitative and quantitative differences between ABO blood groups and subgroups: implications for organ transplantation. Am. J. Transplant. 15, 2602–2615 (2015).
|t Am. J. Transplant.
|v 15
|y 2015
999 C 5 |a 10.1016/0006-291X(84)91585-7
|9 -- missing cx lookup --
|1 H Clausen
|p 523 -
|2 Crossref
|u Clausen, H. et al. Blood group a glycolipid (AX) with globo-series structure which is specific for blood group A1 erythrocytes: one of the chemical bases for A1 and A2 distinction. Biochem. Biophys. Res. Commun. 124, 523–529 (1984).
|t Biochem. Biophys. Res. Commun.
|v 124
|y 1984
999 C 5 |a 10.1073/pnas.82.4.1199
|9 -- missing cx lookup --
|1 H Clausen
|p 1199 -
|2 Crossref
|u Clausen, H., Levery, S. B., Nudelman, E., Tsuchiya, S. & Hakomori, S. Repetitive A epitope (type 3 chain A) defined by blood group A1-specific monoclonal antibody TH-1: chemical basis of qualitative A1 and A2 distinction. Proc. Natl Acad. Sci. USA 82, 1199–1203 (1985).
|t Proc. Natl Acad. Sci. USA
|v 82
|y 1985
999 C 5 |a 10.1016/S0021-9258(17)36104-5
|9 -- missing cx lookup --
|1 H Clausen
|p 1388 -
|2 Crossref
|u Clausen, H., Holmes, E. & Hakomori, S. I. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). II. Differential conversion of different H substrates by A1 and A2 enzymes and type 3 chain H expression in relation to secretor status. J. Biol. Chem. 261, 1388–1392 (1986).
|t J. Biol. Chem.
|v 261
|y 1986
999 C 5 |a 10.1016/S0021-9258(17)36103-3
|9 -- missing cx lookup --
|1 H Clausen
|p 1380 -
|2 Crossref
|u Clausen, H., Levery, S. B., Kannagi, R. & Hakomori, S. I. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). I. Isolation and chemical characterization. J. Biol. Chem. 261, 1380–1387 (1986).
|t J. Biol. Chem.
|v 261
|y 1986
999 C 5 |1 J Ricci Hagman
|y 2019
|2 Crossref
|u Ricci Hagman, J. et al. β1,3GalNAc-T1-dependent extension of the human blood group B antigen results in a novel ABO-related glycolipid structure on erythrocytes. Vox Sang. 114, 53 (2019).
999 C 5 |a 10.1074/jbc.270.9.4640
|9 -- missing cx lookup --
|1 RJ Kelly
|p 4640 -
|2 Crossref
|u Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G. & Lowe, J. B. Sequence and expression of a candidate for the human secretor blood group α(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640–4649 (1995).
|t J. Biol. Chem.
|v 270
|y 1995
999 C 5 |a 10.3389/fgene.2015.00081
|9 -- missing cx lookup --
|2 Crossref
|u Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).
999 C 5 |a 10.1099/ijs.0.02873-0
|9 -- missing cx lookup --
|1 M Derrien
|p 1469 -
|2 Crossref
|u Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia municiphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).
|t Int. J. Syst. Evol. Microbiol.
|v 54
|y 2004
999 C 5 |a 10.1038/s41467-023-37533-6
|1 B Shuoker
|9 -- missing cx lookup --
|2 Crossref
|u Shuoker, B. et al. Sialidases and fucosidases of Akkermansia muciniphila are crucial for growth on mucin and nutrient sharing with mucus-associated gut bacteria. Nat. Commun. 14, 1833 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |a 10.1074/jbc.M709865200
|9 -- missing cx lookup --
|1 KJ Gregg
|p 12604 -
|2 Crossref
|u Gregg, K. J., Finn, R., Abbott, D. W. & Boraston, A. B. Divergent modes of glycan recognition by a new family of carbohydrate-binding modules. J. Biol. Chem. 283, 12604–12613 (2008).
|t J. Biol. Chem.
|v 283
|y 2008
999 C 5 |1 S Kadowaki
|y 1989
|2 Crossref
|u Kadowaki, S., Ueda, T., Yamamoto, K., Kumagai, H. & Tochikura, T. Isolation and characterization of a blood group A substance-degrading α-N-acetylgalactosaminidase from an Acremonium sp. Agric. Biol. Chem. 53, 111–120 (1989).
999 C 5 |a 10.1111/j.1537-2995.2009.02398.x
|9 -- missing cx lookup --
|1 AK Hult
|p 308 -
|2 Crossref
|u Hult, A. K. & Olsson, M. L. Many genetically defined ABO subgroups exhibit characteristic flow cytometric patterns. Transfusion 50, 308–323 (2010).
|t Transfusion
|v 50
|y 2010
999 C 5 |a 10.1021/acscatal.9b04474
|9 -- missing cx lookup --
|1 D Teze
|p 3809 -
|2 Crossref
|u Teze, D. et al. The catalytic acid-base in GH109 resides in a conserved GGHGG loop and allows for comparable α-retaining and β-inverting activity in an N-acetylgalactosaminidase from Akkermansia muciniphila. ACS Catal. 10, 3809–3819 (2020).
|t ACS Catal.
|v 10
|y 2020
999 C 5 |a 10.1038/s41467-023-37324-z
|1 I Anso
|9 -- missing cx lookup --
|2 Crossref
|u Anso, I. et al. Turning universal O into rare Bombay type blood. Nat. Commun. 14, 1765 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |a 10.1038/s41467-020-17075-x
|1 MJ Pichler
|9 -- missing cx lookup --
|2 Crossref
|u Pichler, M. J. et al. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun. 11, 3285 (2020).
|t Nat. Commun.
|v 11
|y 2020
999 C 5 |a 10.1074/jbc.RA120.015776
|9 -- missing cx lookup --
|1 BE McGuire
|p 18426 -
|2 Crossref
|u McGuire, B. E. et al. The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of a-1,3-galactosidic linkages in λ-carrageenan and blood group antigens. J. Biol. Chem. 295, 18426–18435 (2020).
|t J. Biol. Chem.
|v 295
|y 2020
999 C 5 |a 10.1073/pnas.2019220118
|9 -- missing cx lookup --
|1 B Pluvinage
|p e2019220118 -
|2 Crossref
|u Pluvinage, B. et al. Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc. Natl Acad. Sci. USA 118, e2019220118 (2021).
|t Proc. Natl Acad. Sci. USA
|v 118
|y 2021
999 C 5 |a 10.1016/j.bbrc.2020.06.116
|9 -- missing cx lookup --
|1 W Xu
|p 876 -
|2 Crossref
|u Xu, W., Yang, W., Wang, Y., Wang, M. & Zhang, M. Structural and biochemical analyses of β-N-acetylhexosaminidase Am0868 from Akkermansia muciniphila involved in mucin degradation. Biochem. Biophys. Res. Commun. 529, 876–881 (2020).
|t Biochem. Biophys. Res. Commun.
|v 529
|y 2020
999 C 5 |1 HW Gao
|y 2016
|2 Crossref
|u Gao, H. W. et al. Evaluation of group A1B erythrocytes converted to type as group O: studies of markers of function and compatibility. Blood Transfus. 14, 168–174 (2016).
999 C 5 |a 10.1042/BJ20040605
|9 -- missing cx lookup --
|1 C Robbe
|p 307 -
|2 Crossref
|u Robbe, C., Capon, C., Coddeville, B. & Michalski, J. C. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem. J. 384, 307–316 (2004).
|t Biochem. J.
|v 384
|y 2004
999 C 5 |a 10.3390/membranes7040056
|9 -- missing cx lookup --
|2 Crossref
|u Aoki, T. A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins. Membranes 7, 56 (2017).
999 C 5 |a 10.1016/j.jmb.2011.06.035
|9 -- missing cx lookup --
|1 MA Higgins
|p 1017 -
|2 Crossref
|u Higgins, M. A., Ficko-Blean, E., Meloncelli, P. J., Lowary, T. L. & Boraston, A. B. The overall architecture and receptor binding of pneumococcal carbohydrate-antigen-hydrolyzing enzymes. J. Mol. Biol. 411, 1017–1036 (2011).
|t J. Mol. Biol.
|v 411
|y 2011
999 C 5 |a 10.1074/jbc.RA119.009368
|9 -- missing cx lookup --
|1 JK Hobbs
|p 12670 -
|2 Crossref
|u Hobbs, J. K., Pluvinage, B., Robb, M., Smith, S. P. & Boraston, A. B. Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens. J. Biol. Chem. 294, 12670–12682 (2019).
|t J. Biol. Chem.
|v 294
|y 2019
999 C 5 |a 10.1126/scitranslmed.abm7190
|9 -- missing cx lookup --
|2 Crossref
|u Wang, A. et al. Conversion of blood type A donor lungs into universal blood type lungs using ex vivo ABO enzymatic treatment. Sci. Transl. Med. 14, eabm7190 (2022).
999 C 5 |a 10.1093/bjs/znac293
|9 -- missing cx lookup --
|1 S MacMillan
|p 133 -
|2 Crossref
|u MacMillan, S., Hosgood, S. A. & Nicholson, M. L. Enzymatic blood group conversion of human kidneys during ex vivo normothermic machine perfusion. Br. J. Surg. 110, 133–137 (2023).
|t Br. J. Surg.
|v 110
|y 2023
999 C 5 |a 10.1007/978-1-4939-7015-5_6
|9 -- missing cx lookup --
|1 H Nielsen
|p 59 -
|2 Crossref
|u Nielsen, H. Predicting secretory proteins with signaIP. Methods Mol. Biol. 1611, 59–73 (2017).
|t Methods Mol. Biol.
|v 1611
|y 2017
999 C 5 |a 10.1107/S2059798318002978
|9 -- missing cx lookup --
|1 RJ Gildea
|p 405 -
|2 Crossref
|u Gildea, R. J. & Winter, G. Determination of Patterson group symmetry from sparse multi-crystal data sets in the presence of an indexing ambiguity. Acta Crystallogr. D 74, 405–410 (2018).
|t Acta Crystallogr. D
|v 74
|y 2018
999 C 5 |a 10.1038/s41586-021-03819-2
|9 -- missing cx lookup --
|1 J Jumper
|p 583 -
|2 Crossref
|u Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
|t Nature
|v 596
|y 2021
999 C 5 |a 10.1038/s41592-022-01488-1
|9 -- missing cx lookup --
|1 M Mirdita
|p 679 -
|2 Crossref
|u Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
|t Nat. Methods
|v 19
|y 2022
999 C 5 |a 10.1107/S0907444912001308
|9 -- missing cx lookup --
|1 PV Afonine
|p 352 -
|2 Crossref
|u Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).
|t Acta Crystallogr. D
|v 68
|y 2012
999 C 5 |a 10.1107/S0907444910007493
|9 -- missing cx lookup --
|1 P Emsley
|p 486 -
|2 Crossref
|u Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
|t Acta Crystallogr. D
|v 66
|y 2010
999 C 5 |a 10.1016/S0887-7963(99)80059-5
|9 -- missing cx lookup --
|1 WJ Judd
|p 297 -
|2 Crossref
|u Judd, W. J. Elution—dissociation of antibody from red blood cells: theoretical and practical considerations. Transfus. Med. Rev. 13, 297–310 (1999).
|t Transfus. Med. Rev.
|v 13
|y 1999
999 C 5 |a 10.1128/JB.00622-12
|9 -- missing cx lookup --
|1 MS Møller
|p 4249 -
|2 Crossref
|u Møller, M. S. et al. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J. Bacteriol. 194, 4249–4259 (2012).
|t J. Bacteriol.
|v 194
|y 2012
999 C 5 |a 10.1002/pro.4519
|9 -- missing cx lookup --
|2 Crossref
|u Holm, L., Laiho, A., Törönen, P. & Salgado, M. DALI shines a light on remote homologs: one hundred discoveries. Protein Sci. 32, e4519 (2023).
999 C 5 |a 10.1101/gr.849004
|9 -- missing cx lookup --
|1 G Crooks
|p 1188 -
|2 Crossref
|u Crooks, G., Hon, G., Chandonia, J., Brenner, S. & NCBI GenBank, F. T. P. Site\nWebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
|t Genome Res.
|v 14
|y 2004
999 C 5 |1 S Moore
|y 1984
|2 Crossref
|u Moore, S., Chirnside, A., Micklem, L. R., McClelland, D. B. L. & James, K. A mouse monoclonal antibody with anti‐A,(B) specificity which agglutinates Ax cells. Vox Sang. 47, 427–434 (1984).
999 C 5 |a 10.1016/0161-5890(88)90068-5
|9 -- missing cx lookup --
|1 H Clausen
|p 199 -
|2 Crossref
|u Clausen, H., Stroud, M., Parker, J., Springer, G. & Sen-Itiroh, H. Monoclonal antibodies directed to the blood group A associated structure, galactosyl-A: specificity and relation to the Thomsen–Friedenreich antigen. Mol. Immunol. 25, 199–204 (1988).
|t Mol. Immunol.
|v 25
|y 1988


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21