Home > Publications database > Akkermansia muciniphila exoglycosidases target extended blood group antigens to generate ABO-universal blood > print |
001 | 613907 | ||
005 | 20250723172327.0 | ||
024 | 7 | _ | |a 10.1038/s41564-024-01663-4 |2 doi |
024 | 7 | _ | |a altmetric:162964040 |2 altmetric |
024 | 7 | _ | |a pmid:38684911 |2 pmid |
024 | 7 | _ | |a WOS:001209611400002 |2 WOS |
024 | 7 | _ | |a openalex:W4396217051 |2 openalex |
037 | _ | _ | |a PUBDB-2024-05686 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Jensen, Mathias |b 0 |
245 | _ | _ | |a Akkermansia muciniphila exoglycosidases target extended blood group antigens to generate ABO-universal blood |
260 | _ | _ | |a London |c 2024 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1725266556_1114291 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a We acknowledge DESY for time on the P13 beamline at Petra III under the proposal MX846 and would like to thank I. Bento for assistance in using the beamline and data collection.the proposal MX846 and would like to thank I. Bento for assistance in using the beamline and data collection. Waiting for fulltext |
520 | _ | _ | |a Matching donor and recipient blood groups based on red blood cell (RBC) surface ABO glycans and antibodies in plasma is crucial to avoid potentially fatal reactions during transfusions. Enzymatic conversion of RBC glycans to the universal group O is an attractive solution to simplify blood logistics and prevent ABO-mismatched transfusions. The gut symbiont Akkermansia muciniphila can degrade mucin O-glycans including ABO epitopes. Here we biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions. Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analyses of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module. This study demonstrates the potential utility of mucin-degrading gut bacteria as valuable sources of enzymes for production of universal blood for transfusions. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a FS-Proposal: I-20190334 (I-20190334) |0 G:(DE-H253)I-20190334 |c I-20190334 |x 1 |
536 | _ | _ | |a FS-Proposal: I-20200120 (I-20200120) |0 G:(DE-H253)I-20200120 |c I-20200120 |x 2 |
542 | _ | _ | |i 2024-04-29 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
542 | _ | _ | |i 2024-04-29 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P13 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P13-20150101 |6 EXP:(DE-H253)P-P13-20150101 |x 0 |
700 | 1 | _ | |a Stenfelt, Linn |0 0000-0003-0196-1367 |b 1 |
700 | 1 | _ | |a Ricci Hagman, Jennifer |b 2 |
700 | 1 | _ | |a Pichler, Michael Jakob |0 0000-0003-3408-652X |b 3 |
700 | 1 | _ | |a Weikum, Julia |b 4 |
700 | 1 | _ | |a Nielsen, Tine Sofie |b 5 |
700 | 1 | _ | |a Hult, Annika |b 6 |
700 | 1 | _ | |a Morth, Jens Preben |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Olsson, Martin L. |0 0000-0003-1647-9610 |b 8 |e Corresponding author |
700 | 1 | _ | |a Abou Hachem, Maher |0 0000-0001-8250-1842 |b 9 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41564-024-01663-4 |b Springer Science and Business Media LLC |d 2024-04-29 |n 5 |p 1176-1188 |3 journal-article |2 Crossref |t Nature Microbiology |v 9 |y 2024 |x 2058-5276 |
773 | _ | _ | |a 10.1038/s41564-024-01663-4 |g Vol. 9, no. 5, p. 1176 - 1188 |0 PERI:(DE-600)2845610-5 |n 5 |p 1176-1188 |t Nature microbiology |v 9 |y 2024 |x 2058-5276 |
856 | 4 | _ | |u https://www.nature.com/articles/s41564-024-01663-4 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/613907/files/Akkermansia%20muciniphila%20exoglycosidases%20target%20extended%20blood%20group%20antigens%20to%20generate%20ABO-universal%20blood.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/613907/files/Akkermansia%20muciniphila%20exoglycosidases%20target%20extended%20blood%20group%20antigens%20to%20generate%20ABO-universal%20blood.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:613907 |p VDB |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-10-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT MICROBIOL : 2022 |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b NAT MICROBIOL : 2022 |d 2024-12-20 |
920 | 1 | _ | |0 I:(DE-H253)EMBL-User-20120814 |k EMBL-User |l EMBL-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)EMBL-User-20120814 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |2 Crossref |u Blood Safety and Availability (World Health Organization, accessed 20 February 2024); www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability |
999 | C | 5 | |a 10.1002/9781118493595 |9 -- missing cx lookup -- |2 Crossref |u Daniels, G. Human Blood Groups 3rd edn (John Wiley, 2013). |
999 | C | 5 | |1 H Clausen |y 1989 |2 Crossref |u Clausen, H. & Hakomori, S. ‐I. ABH and related histo‐blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang. 56, 1–20 (1989). |
999 | C | 5 | |a 10.1021/bi00844a005 |9 -- missing cx lookup -- |1 S Hakomori |p 1279 - |2 Crossref |u Hakomori, S. & Strycharz, G. D. Cellular blood-group substances. I. Isolation and chemical composition of blood-group ABH and Leb isoantigens of sphingoglycolipid nature. Biochemistry 7, 1279–1286 (1968). |t Biochemistry |v 7 |y 1968 |
999 | C | 5 | |a 10.1016/S0021-9258(17)34351-X |9 -- missing cx lookup -- |2 Crossref |u Jarnefelt, J., Rush, J., Li, Y. T. & Laine, R. A. Erythroglycan, a high molecular weight glycopeptide with the repeating structure [galactosyl-(1 leads to 4)-2-deoxy-2-acetamido-glucosyl(1 leads to 3)] comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stroma. J. Biol. Chem. 253, 8006–8009 (1978). |
999 | C | 5 | |a 10.1038/s41564-019-0548-9 |9 -- missing cx lookup -- |1 H Clausen |p 1426 - |2 Crossref |u Clausen, H. & Olsson, M. L. Towards universally acceptable blood. Nat. Microbiol. 4, 1426–1427 (2019). |t Nat. Microbiol. |v 4 |y 2019 |
999 | C | 5 | |a 10.1126/science.6274021 |9 -- missing cx lookup -- |1 J Goldstein |p 168 - |2 Crossref |u Goldstein, J. et al. Group B erythrocytes enzymatically converted to group O survive normally in A, B and O individuals. Science 215, 168–170 (1982). |t Science |v 215 |y 1982 |
999 | C | 5 | |a 10.1038/nbt1298 |9 -- missing cx lookup -- |1 QP Liu |p 454 - |2 Crossref |u Liu, Q. P. et al. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25, 454–464 (2007). |t Nat. Biotechnol. |v 25 |y 2007 |
999 | C | 5 | |a 10.1038/s41564-019-0469-7 |9 -- missing cx lookup -- |1 P Rahfeld |p 1475 - |2 Crossref |u Rahfeld, P. et al. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat. Microbiol. 4, 1475–1485 (2019). |t Nat. Microbiol. |v 4 |y 2019 |
999 | C | 5 | |a 10.1046/j.1537-2995.2000.40111290.x |9 -- missing cx lookup -- |1 MS Kruskall |p 1290 - |2 Crossref |u Kruskall, M. S. et al. Transfusion to blood group A and O patients of group B RBCs that have been enzymatically converted to group O. Transfusion 40, 1290–1298 (2000). |t Transfusion |v 40 |y 2000 |
999 | C | 5 | |a 10.1182/blood.V77.6.1383.1383 |9 -- missing cx lookup -- |1 LL Lenny |p 1383 - |2 Crossref |u Lenny, L. L., Hurst, R., Goldstein, J., Benjamin, L. J. & Jones, R. L. Single-unit transfusions of RBC enzymatically converted from group B to group O to A and O normal volunteers. Blood 77, 1383–1388 (1991). |t Blood |v 77 |y 1991 |
999 | C | 5 | |a 10.1046/j.1537-2995.1994.34394196617.x |9 -- missing cx lookup -- |1 LL Lenny |p 209 - |2 Crossref |u Lenny, L. L., Hurst, R. & Galbraith, R. A. Transfusions to group O subjects of 2 units of red cells enzymatically converted from group B to group O. Transfusion 34, 209–214 (1994). |t Transfusion |v 34 |y 1994 |
999 | C | 5 | |a 10.1111/j.1365-2141.2007.06839.x |9 -- missing cx lookup -- |1 ML Olsson |p 3 - |2 Crossref |u Olsson, M. L. & Clausen, H. Modifying the red cell surface: towards an ABO-universal blood supply. Br. J. Haematol. 140, 3–12 (2008). |t Br. J. Haematol. |v 140 |y 2008 |
999 | C | 5 | |a 10.1111/ajt.13328 |9 -- missing cx lookup -- |1 M Jeyakanthan |p 2602 - |2 Crossref |u Jeyakanthan, M. et al. Chemical basis for qualitative and quantitative differences between ABO blood groups and subgroups: implications for organ transplantation. Am. J. Transplant. 15, 2602–2615 (2015). |t Am. J. Transplant. |v 15 |y 2015 |
999 | C | 5 | |a 10.1016/0006-291X(84)91585-7 |9 -- missing cx lookup -- |1 H Clausen |p 523 - |2 Crossref |u Clausen, H. et al. Blood group a glycolipid (AX) with globo-series structure which is specific for blood group A1 erythrocytes: one of the chemical bases for A1 and A2 distinction. Biochem. Biophys. Res. Commun. 124, 523–529 (1984). |t Biochem. Biophys. Res. Commun. |v 124 |y 1984 |
999 | C | 5 | |a 10.1073/pnas.82.4.1199 |9 -- missing cx lookup -- |1 H Clausen |p 1199 - |2 Crossref |u Clausen, H., Levery, S. B., Nudelman, E., Tsuchiya, S. & Hakomori, S. Repetitive A epitope (type 3 chain A) defined by blood group A1-specific monoclonal antibody TH-1: chemical basis of qualitative A1 and A2 distinction. Proc. Natl Acad. Sci. USA 82, 1199–1203 (1985). |t Proc. Natl Acad. Sci. USA |v 82 |y 1985 |
999 | C | 5 | |a 10.1016/S0021-9258(17)36104-5 |9 -- missing cx lookup -- |1 H Clausen |p 1388 - |2 Crossref |u Clausen, H., Holmes, E. & Hakomori, S. I. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). II. Differential conversion of different H substrates by A1 and A2 enzymes and type 3 chain H expression in relation to secretor status. J. Biol. Chem. 261, 1388–1392 (1986). |t J. Biol. Chem. |v 261 |y 1986 |
999 | C | 5 | |a 10.1016/S0021-9258(17)36103-3 |9 -- missing cx lookup -- |1 H Clausen |p 1380 - |2 Crossref |u Clausen, H., Levery, S. B., Kannagi, R. & Hakomori, S. I. Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). I. Isolation and chemical characterization. J. Biol. Chem. 261, 1380–1387 (1986). |t J. Biol. Chem. |v 261 |y 1986 |
999 | C | 5 | |1 J Ricci Hagman |y 2019 |2 Crossref |u Ricci Hagman, J. et al. β1,3GalNAc-T1-dependent extension of the human blood group B antigen results in a novel ABO-related glycolipid structure on erythrocytes. Vox Sang. 114, 53 (2019). |
999 | C | 5 | |a 10.1074/jbc.270.9.4640 |9 -- missing cx lookup -- |1 RJ Kelly |p 4640 - |2 Crossref |u Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G. & Lowe, J. B. Sequence and expression of a candidate for the human secretor blood group α(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640–4649 (1995). |t J. Biol. Chem. |v 270 |y 1995 |
999 | C | 5 | |a 10.3389/fgene.2015.00081 |9 -- missing cx lookup -- |2 Crossref |u Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015). |
999 | C | 5 | |a 10.1099/ijs.0.02873-0 |9 -- missing cx lookup -- |1 M Derrien |p 1469 - |2 Crossref |u Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia municiphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004). |t Int. J. Syst. Evol. Microbiol. |v 54 |y 2004 |
999 | C | 5 | |a 10.1038/s41467-023-37533-6 |1 B Shuoker |9 -- missing cx lookup -- |2 Crossref |u Shuoker, B. et al. Sialidases and fucosidases of Akkermansia muciniphila are crucial for growth on mucin and nutrient sharing with mucus-associated gut bacteria. Nat. Commun. 14, 1833 (2023). |t Nat. Commun. |v 14 |y 2023 |
999 | C | 5 | |a 10.1074/jbc.M709865200 |9 -- missing cx lookup -- |1 KJ Gregg |p 12604 - |2 Crossref |u Gregg, K. J., Finn, R., Abbott, D. W. & Boraston, A. B. Divergent modes of glycan recognition by a new family of carbohydrate-binding modules. J. Biol. Chem. 283, 12604–12613 (2008). |t J. Biol. Chem. |v 283 |y 2008 |
999 | C | 5 | |1 S Kadowaki |y 1989 |2 Crossref |u Kadowaki, S., Ueda, T., Yamamoto, K., Kumagai, H. & Tochikura, T. Isolation and characterization of a blood group A substance-degrading α-N-acetylgalactosaminidase from an Acremonium sp. Agric. Biol. Chem. 53, 111–120 (1989). |
999 | C | 5 | |a 10.1111/j.1537-2995.2009.02398.x |9 -- missing cx lookup -- |1 AK Hult |p 308 - |2 Crossref |u Hult, A. K. & Olsson, M. L. Many genetically defined ABO subgroups exhibit characteristic flow cytometric patterns. Transfusion 50, 308–323 (2010). |t Transfusion |v 50 |y 2010 |
999 | C | 5 | |a 10.1021/acscatal.9b04474 |9 -- missing cx lookup -- |1 D Teze |p 3809 - |2 Crossref |u Teze, D. et al. The catalytic acid-base in GH109 resides in a conserved GGHGG loop and allows for comparable α-retaining and β-inverting activity in an N-acetylgalactosaminidase from Akkermansia muciniphila. ACS Catal. 10, 3809–3819 (2020). |t ACS Catal. |v 10 |y 2020 |
999 | C | 5 | |a 10.1038/s41467-023-37324-z |1 I Anso |9 -- missing cx lookup -- |2 Crossref |u Anso, I. et al. Turning universal O into rare Bombay type blood. Nat. Commun. 14, 1765 (2023). |t Nat. Commun. |v 14 |y 2023 |
999 | C | 5 | |a 10.1038/s41467-020-17075-x |1 MJ Pichler |9 -- missing cx lookup -- |2 Crossref |u Pichler, M. J. et al. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun. 11, 3285 (2020). |t Nat. Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1074/jbc.RA120.015776 |9 -- missing cx lookup -- |1 BE McGuire |p 18426 - |2 Crossref |u McGuire, B. E. et al. The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of a-1,3-galactosidic linkages in λ-carrageenan and blood group antigens. J. Biol. Chem. 295, 18426–18435 (2020). |t J. Biol. Chem. |v 295 |y 2020 |
999 | C | 5 | |a 10.1073/pnas.2019220118 |9 -- missing cx lookup -- |1 B Pluvinage |p e2019220118 - |2 Crossref |u Pluvinage, B. et al. Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc. Natl Acad. Sci. USA 118, e2019220118 (2021). |t Proc. Natl Acad. Sci. USA |v 118 |y 2021 |
999 | C | 5 | |a 10.1016/j.bbrc.2020.06.116 |9 -- missing cx lookup -- |1 W Xu |p 876 - |2 Crossref |u Xu, W., Yang, W., Wang, Y., Wang, M. & Zhang, M. Structural and biochemical analyses of β-N-acetylhexosaminidase Am0868 from Akkermansia muciniphila involved in mucin degradation. Biochem. Biophys. Res. Commun. 529, 876–881 (2020). |t Biochem. Biophys. Res. Commun. |v 529 |y 2020 |
999 | C | 5 | |1 HW Gao |y 2016 |2 Crossref |u Gao, H. W. et al. Evaluation of group A1B erythrocytes converted to type as group O: studies of markers of function and compatibility. Blood Transfus. 14, 168–174 (2016). |
999 | C | 5 | |a 10.1042/BJ20040605 |9 -- missing cx lookup -- |1 C Robbe |p 307 - |2 Crossref |u Robbe, C., Capon, C., Coddeville, B. & Michalski, J. C. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem. J. 384, 307–316 (2004). |t Biochem. J. |v 384 |y 2004 |
999 | C | 5 | |a 10.3390/membranes7040056 |9 -- missing cx lookup -- |2 Crossref |u Aoki, T. A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins. Membranes 7, 56 (2017). |
999 | C | 5 | |a 10.1016/j.jmb.2011.06.035 |9 -- missing cx lookup -- |1 MA Higgins |p 1017 - |2 Crossref |u Higgins, M. A., Ficko-Blean, E., Meloncelli, P. J., Lowary, T. L. & Boraston, A. B. The overall architecture and receptor binding of pneumococcal carbohydrate-antigen-hydrolyzing enzymes. J. Mol. Biol. 411, 1017–1036 (2011). |t J. Mol. Biol. |v 411 |y 2011 |
999 | C | 5 | |a 10.1074/jbc.RA119.009368 |9 -- missing cx lookup -- |1 JK Hobbs |p 12670 - |2 Crossref |u Hobbs, J. K., Pluvinage, B., Robb, M., Smith, S. P. & Boraston, A. B. Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens. J. Biol. Chem. 294, 12670–12682 (2019). |t J. Biol. Chem. |v 294 |y 2019 |
999 | C | 5 | |a 10.1126/scitranslmed.abm7190 |9 -- missing cx lookup -- |2 Crossref |u Wang, A. et al. Conversion of blood type A donor lungs into universal blood type lungs using ex vivo ABO enzymatic treatment. Sci. Transl. Med. 14, eabm7190 (2022). |
999 | C | 5 | |a 10.1093/bjs/znac293 |9 -- missing cx lookup -- |1 S MacMillan |p 133 - |2 Crossref |u MacMillan, S., Hosgood, S. A. & Nicholson, M. L. Enzymatic blood group conversion of human kidneys during ex vivo normothermic machine perfusion. Br. J. Surg. 110, 133–137 (2023). |t Br. J. Surg. |v 110 |y 2023 |
999 | C | 5 | |a 10.1007/978-1-4939-7015-5_6 |9 -- missing cx lookup -- |1 H Nielsen |p 59 - |2 Crossref |u Nielsen, H. Predicting secretory proteins with signaIP. Methods Mol. Biol. 1611, 59–73 (2017). |t Methods Mol. Biol. |v 1611 |y 2017 |
999 | C | 5 | |a 10.1107/S2059798318002978 |9 -- missing cx lookup -- |1 RJ Gildea |p 405 - |2 Crossref |u Gildea, R. J. & Winter, G. Determination of Patterson group symmetry from sparse multi-crystal data sets in the presence of an indexing ambiguity. Acta Crystallogr. D 74, 405–410 (2018). |t Acta Crystallogr. D |v 74 |y 2018 |
999 | C | 5 | |a 10.1038/s41586-021-03819-2 |9 -- missing cx lookup -- |1 J Jumper |p 583 - |2 Crossref |u Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). |t Nature |v 596 |y 2021 |
999 | C | 5 | |a 10.1038/s41592-022-01488-1 |9 -- missing cx lookup -- |1 M Mirdita |p 679 - |2 Crossref |u Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022). |t Nat. Methods |v 19 |y 2022 |
999 | C | 5 | |a 10.1107/S0907444912001308 |9 -- missing cx lookup -- |1 PV Afonine |p 352 - |2 Crossref |u Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012). |t Acta Crystallogr. D |v 68 |y 2012 |
999 | C | 5 | |a 10.1107/S0907444910007493 |9 -- missing cx lookup -- |1 P Emsley |p 486 - |2 Crossref |u Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). |t Acta Crystallogr. D |v 66 |y 2010 |
999 | C | 5 | |a 10.1016/S0887-7963(99)80059-5 |9 -- missing cx lookup -- |1 WJ Judd |p 297 - |2 Crossref |u Judd, W. J. Elution—dissociation of antibody from red blood cells: theoretical and practical considerations. Transfus. Med. Rev. 13, 297–310 (1999). |t Transfus. Med. Rev. |v 13 |y 1999 |
999 | C | 5 | |a 10.1128/JB.00622-12 |9 -- missing cx lookup -- |1 MS Møller |p 4249 - |2 Crossref |u Møller, M. S. et al. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J. Bacteriol. 194, 4249–4259 (2012). |t J. Bacteriol. |v 194 |y 2012 |
999 | C | 5 | |a 10.1002/pro.4519 |9 -- missing cx lookup -- |2 Crossref |u Holm, L., Laiho, A., Törönen, P. & Salgado, M. DALI shines a light on remote homologs: one hundred discoveries. Protein Sci. 32, e4519 (2023). |
999 | C | 5 | |a 10.1101/gr.849004 |9 -- missing cx lookup -- |1 G Crooks |p 1188 - |2 Crossref |u Crooks, G., Hon, G., Chandonia, J., Brenner, S. & NCBI GenBank, F. T. P. Site\nWebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004). |t Genome Res. |v 14 |y 2004 |
999 | C | 5 | |1 S Moore |y 1984 |2 Crossref |u Moore, S., Chirnside, A., Micklem, L. R., McClelland, D. B. L. & James, K. A mouse monoclonal antibody with anti‐A,(B) specificity which agglutinates Ax cells. Vox Sang. 47, 427–434 (1984). |
999 | C | 5 | |a 10.1016/0161-5890(88)90068-5 |9 -- missing cx lookup -- |1 H Clausen |p 199 - |2 Crossref |u Clausen, H., Stroud, M., Parker, J., Springer, G. & Sen-Itiroh, H. Monoclonal antibodies directed to the blood group A associated structure, galactosyl-A: specificity and relation to the Thomsen–Friedenreich antigen. Mol. Immunol. 25, 199–204 (1988). |t Mol. Immunol. |v 25 |y 1988 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|