001     613885
005     20250723172321.0
024 7 _ |a 10.1038/s41594-024-01218-5
|2 doi
024 7 _ |a 1545-9993
|2 ISSN
024 7 _ |a 1072-8368
|2 ISSN
024 7 _ |a 1545-9985
|2 ISSN
024 7 _ |a 2331-365X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-05664
|2 datacite_doi
024 7 _ |a altmetric:159108527
|2 altmetric
024 7 _ |a pmid:38316878
|2 pmid
024 7 _ |a WOS:001158144600003
|2 WOS
024 7 _ |a openalex:W4391533216
|2 openalex
037 _ _ |a PUBDB-2024-05664
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Liu, Jiasui
|0 0009-0008-4202-076X
|b 0
245 _ _ |a The palisade layer of the poxvirus core is composed of flexible A10 trimers
260 _ _ |a London [u.a.]
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729067315_2596425
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to its asymmetric shape, size and compactness, the structure of the infectious mature virus (MV) of vaccinia virus (VACV), the best-studied poxvirus, remains poorly understood. Instead, subviral particles, in particular membrane-free viral cores, have been studied with cryo-electron microscopy. Here, we compared viral cores obtained by detergent stripping of MVs with cores in the cellular cytoplasm, early in infection. We focused on the prominent palisade layer on the core surface, combining cryo-electron tomography, subtomogram averaging and AlphaFold2 structure prediction. We showed that the palisade is composed of densely packed trimers of the major core protein A10. Trimers display a random order and their classification indicates structural flexibility. A10 on cytoplasmic cores is organized in a similar manner, indicating that the structures obtained in vitro are physiologically relevant. We discuss our results in the context of the VACV replicative cycle, and the assembly and disassembly of the infectious MV.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
542 _ _ |i 2024-02-05
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-02-05
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Corroyer-Dulmont, Simon
|0 P:(DE-H253)PIP1097097
|b 1
700 1 _ |a Pražák, Vojtěch
|b 2
700 1 _ |a Khusainov, Iskander
|0 0000-0001-5199-5157
|b 3
700 1 _ |a Bahrami, Karola
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Welsch, Sonja
|0 0000-0002-6049-6664
|b 5
700 1 _ |a Vasishtan, Daven
|0 P:(DE-H253)PIP1085521
|b 6
700 1 _ |a Obarska-Kosińska, Agnieszka
|0 0000-0001-7686-695X
|b 7
700 1 _ |a Thorkelsson, Sigurdur R.
|0 P:(DE-H253)PIP1088744
|b 8
700 1 _ |a Gruenewald, Kay
|0 P:(DE-H253)PIP1023782
|b 9
|e Corresponding author
|u desy
700 1 _ |a Quemin, Emmanuelle
|0 P:(DE-H253)PIP1082957
|b 10
|e Corresponding author
700 1 _ |a Turoňová, Beata
|0 0000-0002-5457-4478
|b 11
|e Corresponding author
700 1 _ |a Locker, Jacomina Krijnse
|0 0000-0001-8658-2977
|b 12
|e Corresponding author
773 1 8 |a 10.1038/s41594-024-01218-5
|b Springer Science and Business Media LLC
|d 2024-02-05
|n 7
|p 1105-1113
|3 journal-article
|2 Crossref
|t Nature Structural & Molecular Biology
|v 31
|y 2024
|x 1545-9993
773 _ _ |a 10.1038/s41594-024-01218-5
|g Vol. 31, no. 7, p. 1105 - 1113
|0 PERI:(DE-600)2131437-8
|n 7
|p 1105-1113
|t Nature structural & molecular biology
|v 31
|y 2024
|x 1545-9993
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/613885/files/s41594-024-01218-5.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/613885/files/s41594-024-01218-5.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:613885
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 1
|6 P:(DE-H253)PIP1097097
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1097097
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 6
|6 P:(DE-H253)PIP1085521
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1085521
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 8
|6 P:(DE-H253)PIP1088744
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1088744
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 9
|6 P:(DE-H253)PIP1023782
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 10
|6 P:(DE-H253)PIP1082957
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1082957
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT STRUCT MOL BIOL : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT STRUCT MOL BIOL : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)CSSB-LIV-KG-20220525
|k CSSB-LIV-KG
|l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) - Kay Grünewald
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-LIV-KG-20220525
980 1 _ |a FullTexts
999 C 5 |a 10.1016/j.virol.2015.02.003
|9 -- missing cx lookup --
|1 B Moss
|p 619 -
|2 Crossref
|u Moss, B. Poxvirus membrane biogenesis. Virology 479–480, 619–626 (2015).
|t Virology
|v 479–480
|y 2015
999 C 5 |a 10.1016/S0065-3527(06)66002-8
|9 -- missing cx lookup --
|1 RC Condit
|p 31 -
|2 Crossref
|u Condit, R. C., Moussatche, N. & Traktman, P. In a nutshell: structure and assembly of the vaccinia virion. Adv. Virus Res. 66, 31–124 (2006).
|t Adv. Virus Res.
|v 66
|y 2006
999 C 5 |a 10.1073/pnas.0409825102
|9 -- missing cx lookup --
|1 M Cyrklaff
|p 2772 -
|2 Crossref
|u Cyrklaff, M. et al. Cryo-electron tomography of vaccinia virus. Proc. Natl Acad. Sci. USA 102, 2772–2777 (2005).
|t Proc. Natl Acad. Sci. USA
|v 102
|y 2005
999 C 5 |a 10.1128/JVI.80.5.2127-2140.2006
|9 -- missing cx lookup --
|1 C-S Chung
|p 2127 -
|2 Crossref
|u Chung, C.-S. et al. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J. Virol. 80, 2127–2140 (2006).
|t J. Virol.
|v 80
|y 2006
999 C 5 |a 10.1128/jvi.70.11.7485-7497.1996
|9 -- missing cx lookup --
|1 ON Jensen
|p 7485 -
|2 Crossref
|u Jensen, O. N. et al. Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. J. Virol. 70, 7485–7497 (1996).
|t J. Virol.
|v 70
|y 1996
999 C 5 |a 10.1128/JVI.74.8.3525-3536.2000
|9 -- missing cx lookup --
|1 K Pedersen
|p 3525 -
|2 Crossref
|u Pedersen, K. et al. Characterization of vaccinia virus intracellular cores: implications for viral uncoating and core structure. J. Virol. 74, 3525–3536 (2000).
|t J. Virol.
|v 74
|y 2000
999 C 5 |a 10.1016/S0022-5320(66)80077-1
|9 -- missing cx lookup --
|1 KB Easterbrook
|p 484 -
|2 Crossref
|u Easterbrook, K. B. Controlled degradation of vaccinia virions in vitro: an electron microscopic study. J. Ultrastruct. Res. 14, 484–496 (1966).
|t J. Ultrastruct. Res.
|v 14
|y 1966
999 C 5 |a 10.1006/viro.1995.0061
|9 -- missing cx lookup --
|1 S Wilton
|p 503 -
|2 Crossref
|u Wilton, S., Mohandas, A. R. & Dales, S. Organization of the vaccinia envelope and relationship to the structure of intracellular mature virions. Virology 214, 503–511 (1995).
|t Virology
|v 214
|y 1995
999 C 5 |a 10.1016/j.virol.2014.11.020
|9 -- missing cx lookup --
|1 N Moussatche
|p 204 -
|2 Crossref
|u Moussatche, N. & Condit, R. C. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization. Virology 475, 204–218 (2015).
|t Virology
|v 475
|y 2015
999 C 5 |a 10.1128/jvi.68.3.1935-1941.1994
|9 -- missing cx lookup --
|1 J Dubochet
|p 1935 -
|2 Crossref
|u Dubochet, J., Adrian, M., Richter, K., Garces, J. & Wittek, R. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy. J. Virol. 68, 1935–1941 (1994).
|t J. Virol.
|v 68
|y 1994
999 C 5 |a 10.1371/journal.pbio.3002005
|9 -- missing cx lookup --
|1 M Hernandez-Gonzalez
|p e3002005 -
|2 Crossref
|u Hernandez-Gonzalez, M., Calcraft, T., Nans, A., Rosenthal, P. B. & Way, M. A succession of two viral lattices drives vaccinia virus assembly. PLoS Biol. 21, e3002005 (2023).
|t PLoS Biol.
|v 21
|y 2023
999 C 5 |a 10.1038/s41586-021-03819-2
|9 -- missing cx lookup --
|1 J Jumper
|p 583 -
|2 Crossref
|u Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
|t Nature
|v 596
|y 2021
999 C 5 |a 10.1016/S0021-9258(18)52298-5
|9 -- missing cx lookup --
|1 B Moss
|p 1355 -
|2 Crossref
|u Moss, B., Ahn, B. Y., Amegadzie, B., Gershon, P. D. & Keck, J. G. Cytoplasmic transcription system encoded by vaccinia virus. J. Biol. Chem. 266, 1355–1358 (1991).
|t J. Biol. Chem.
|v 266
|y 1991
999 C 5 |a 10.1371/journal.pone.0000420
|9 -- missing cx lookup --
|1 M Cyrklaff
|p e420 -
|2 Crossref
|u Cyrklaff, M. et al. Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLoS ONE 2, e420 (2007).
|t PLoS ONE
|v 2
|y 2007
999 C 5 |a 10.1016/j.celrep.2013.06.028
|9 -- missing cx lookup --
|1 FI Schmidt
|p 464 -
|2 Crossref
|u Schmidt, F. I. et al. Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies. Cell Rep. 4, 464–476 (2013).
|t Cell Rep.
|v 4
|y 2013
999 C 5 |a 10.1111/j.1462-5822.2005.00632.x
|9 -- missing cx lookup --
|1 D Rodriguez
|p 427 -
|2 Crossref
|u Rodriguez, D. et al. A vaccinia virus lacking A10L: viral core proteins accumulate on structures derived from the endoplasmic reticulum. Cell. Microbiol. 8, 427–437 (2006).
|t Cell. Microbiol.
|v 8
|y 2006
999 C 5 |a 10.1128/jvi.6.6.717-726.1970
|9 -- missing cx lookup --
|1 E Katz
|p 717 -
|2 Crossref
|u Katz, E. & Moss, B. Vaccinia virus structural polypeptide derived from a high-molecular-weight precursor: formation and integration into virus particles. J. Virol. 6, 717–726 (1970).
|t J. Virol.
|v 6
|y 1970
999 C 5 |a 10.1128/mbio.01135-23
|9 -- missing cx lookup --
|1 Y Mirzakhanyan
|p e0113523 -
|2 Crossref
|u Mirzakhanyan, Y., Jankevics, A., Scheltema, R. A. & Gershon, P. D. Combination of deep XLMS with deep learning reveals an ordered rearrangement and assembly of a major protein component of the vaccinia virion. mBio 14, e0113523 (2023).
|t mBio
|v 14
|y 2023
999 C 5 |a 10.1091/mbc.12.12.3875
|9 -- missing cx lookup --
|1 M Mallardo
|p 3875 -
|2 Crossref
|u Mallardo, M., Schleich, S. & Locker, J. K. Microtubule-dependent organization of vaccinia virus core-derivd early mRNAs into distinct cytoplasmic structures. Mol. Biol. Cell 12, 3875–3891 (2001).
|t Mol. Biol. Cell
|v 12
|y 2001
999 C 5 |a 10.1017/S1431927603445911
|9 -- missing cx lookup --
|1 DN Mastronarde
|p 1182 -
|2 Crossref
|u Mastronarde, D. N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 9, 1182–1183 (2003).
|t Microsc. Microanal.
|v 9
|y 2003
999 C 5 |a 10.1016/j.jsb.2016.06.007
|9 -- missing cx lookup --
|1 WJH Hagen
|p 191 -
|2 Crossref
|u Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).
|t J. Struct. Biol.
|v 197
|y 2017
999 C 5 |a 10.1006/jsbi.1996.0013
|9 -- missing cx lookup --
|1 JR Kremer
|p 71 -
|2 Crossref
|u Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
|t J. Struct. Biol.
|v 116
|y 1996
999 C 5 |a 10.1126/science.abd5223
|9 -- missing cx lookup --
|1 B Turoňová
|p 203 -
|2 Crossref
|u Turoňová, B. et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203–208 (2020).
|t Science
|v 370
|y 2020
999 C 5 |a 10.1016/j.jsb.2015.08.008
|9 -- missing cx lookup --
|1 A Rohou
|p 216 -
|2 Crossref
|u Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
|t J. Struct. Biol.
|v 192
|y 2015
999 C 5 |a 10.1038/nature24490
|9 -- missing cx lookup --
|1 W Wan
|p 394 -
|2 Crossref
|u Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).
|t Nature
|v 551
|y 2017
999 C 5 |a 10.1016/j.jsb.2017.07.007
|9 -- missing cx lookup --
|1 B Turoňová
|p 187 -
|2 Crossref
|u Turoňová, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å. J. Struct. Biol. 199, 187–195 (2017).
|t J. Struct. Biol.
|v 199
|y 2017
999 C 5 |a 10.5281/zenodo.3973621
|9 -- missing cx lookup --
|2 Crossref
|u Turoňová, B. turonova/Fourier3D: Fourier3D. Zenodo https://doi.org/10.5281/zenodo.3973621 (2020).
999 C 5 |a 10.5281/zenodo.7276432
|9 -- missing cx lookup --
|2 Crossref
|u Sofroniew, N. et al. napari: a multi-dimensional image viewer for Python. Zenodo https://doi.org/10.5281/zenodo.7276432 (2022).
999 C 5 |a 10.5281/zenodo.3973623
|9 -- missing cx lookup --
|2 Crossref
|u Turoňová, B. turonova/novaSTA: novaSTA. Zenodo https://doi.org/10.5281/zenodo.3973623 (2020).
999 C 5 |a 10.1101/2021.10.04.463034
|9 -- missing cx lookup --
|2 Crossref
|u Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
999 C 5 |a 10.1017/S143192762002187X
|9 -- missing cx lookup --
|1 W Wan
|p 2516 -
|2 Crossref
|u Wan, W., Khavnekar, S., Wagner, J., Erdmann, P. & Baumeister, W. STOPGAP: a software package for subtomogram averaging and refinement. Microsc. Microanal. 26, 2516 (2020).
|t Microsc. Microanal.
|v 26
|y 2020
999 C 5 |a 10.1002/pro.4472
|9 -- missing cx lookup --
|1 UH Ermel
|p e4472 -
|2 Crossref
|u Ermel, U. H., Arghittu, S. M. & Frangakis, A. S. ArtiaX: an electron tomography toolbox for the interactive handling of sub-tomograms in UCSF ChimeraX. Protein Sci. 31, e4472 (2022).
|t Protein Sci.
|v 31
|y 2022
999 C 5 |a 10.1002/pro.3943
|9 -- missing cx lookup --
|1 EF Pettersen
|p 70 -
|2 Crossref
|u Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
|t Protein Sci.
|v 30
|y 2021
999 C 5 |a 10.1126/science.abd9776
|9 -- missing cx lookup --
|1 CE Zimmerli
|p eabd9776 -
|2 Crossref
|u Zimmerli, C. E. et al. Nuclear pores dilate and constrict in cellulo. Science 374, eabd9776 (2021).
|t Science
|v 374
|y 2021
999 C 5 |a 10.1002/jcc.20084
|9 -- missing cx lookup --
|1 EF Pettersen
|p 1605 -
|2 Crossref
|u Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
|t J. Comput. Chem.
|v 25
|y 2004
999 C 5 |a 10.1038/s41596-021-00640-z
|9 -- missing cx lookup --
|1 V Rantos
|p 152 -
|2 Crossref
|u Rantos, V., Karius, K. & Kosinski, J. Integrative structural modeling of macromolecular complexes using Assembline. Nat. Protoc. 17, 152–176 (2022).
|t Nat. Protoc.
|v 17
|y 2022
999 C 5 |a 10.1038/s41586-021-03985-3
|9 -- missing cx lookup --
|1 AP Schuller
|p 667 -
|2 Crossref
|u Schuller, A. P. et al. The cellular environment shapes the nuclear pore complex architecture. Nature 598, 667–671 (2021).
|t Nature
|v 598
|y 2021
999 C 5 |a 10.1107/S2052252519007619
|9 -- missing cx lookup --
|1 RT Kidmose
|p 526 -
|2 Crossref
|u Kidmose, R. T. et al. Namdinator–automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).
|t IUCrJ
|v 6
|y 2019
999 C 5 |a 10.1107/S2059798318009324
|9 -- missing cx lookup --
|1 PV Afonine
|p 814 -
|2 Crossref
|u Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).
|t Acta Crystallogr. D
|v 74
|y 2018
999 C 5 |a 10.1016/j.jsb.2010.03.007
|9 -- missing cx lookup --
|1 GD Pintilie
|p 427 -
|2 Crossref
|u Pintilie, G. D., Zhang, J., Goddard, T. D., Chiu, W. & Gossard, D. C. Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J. Struct. Biol. 170, 427–438 (2010).
|t J. Struct. Biol.
|v 170
|y 2010
999 C 5 |1 M Laguerre
|y 1997
|2 Crossref
|u Laguerre, M., Saux, M., Dubost, J. P. & Carpy, A. MLPP: a program for the calculation of molecular lipophilicity potential in proteins. Pharm. Pharmacol. Commun. 3, 217–222 (1997).
999 C 5 |a 10.5281/zenodo.7997723
|9 -- missing cx lookup --
|2 Crossref
|u Turoňová, B. turonova/cryoCAT: initial release. Zenodo https://doi.org/10.5281/zenodo.7997723 (2023).
999 C 5 |a 10.1093/bioinformatics/btr575
|9 -- missing cx lookup --
|1 A Stivala
|p 3315 -
|2 Crossref
|u Stivala, A., Wybrow, M., Wirth, A., Whisstock, J. C. & Stuckey, P. J. Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27, 3315–3316 (2011).
|t Bioinformatics
|v 27
|y 2011
999 C 5 |a 10.1016/j.ultramic.2013.06.004
|9 -- missing cx lookup --
|1 S Chen
|p 24 -
|2 Crossref
|u Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).
|t Ultramicroscopy
|v 135
|y 2013
999 C 5 |a 10.1093/nar/gkw408
|9 -- missing cx lookup --
|1 H Ashkenazy
|p W344 -
|2 Crossref
|u Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).
|t Nucleic Acids Res.
|v 44
|y 2016


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21