000613885 001__ 613885
000613885 005__ 20250723172321.0
000613885 0247_ $$2doi$$a10.1038/s41594-024-01218-5
000613885 0247_ $$2ISSN$$a1545-9993
000613885 0247_ $$2ISSN$$a1072-8368
000613885 0247_ $$2ISSN$$a1545-9985
000613885 0247_ $$2ISSN$$a2331-365X
000613885 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05664
000613885 0247_ $$2altmetric$$aaltmetric:159108527
000613885 0247_ $$2pmid$$apmid:38316878
000613885 0247_ $$2WOS$$aWOS:001158144600003
000613885 0247_ $$2openalex$$aopenalex:W4391533216
000613885 037__ $$aPUBDB-2024-05664
000613885 041__ $$aEnglish
000613885 082__ $$a570
000613885 1001_ $$00009-0008-4202-076X$$aLiu, Jiasui$$b0
000613885 245__ $$aThe palisade layer of the poxvirus core is composed of flexible A10 trimers
000613885 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2024
000613885 3367_ $$2DRIVER$$aarticle
000613885 3367_ $$2DataCite$$aOutput Types/Journal article
000613885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729067315_2596425
000613885 3367_ $$2BibTeX$$aARTICLE
000613885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000613885 3367_ $$00$$2EndNote$$aJournal Article
000613885 520__ $$aDue to its asymmetric shape, size and compactness, the structure of the infectious mature virus (MV) of vaccinia virus (VACV), the best-studied poxvirus, remains poorly understood. Instead, subviral particles, in particular membrane-free viral cores, have been studied with cryo-electron microscopy. Here, we compared viral cores obtained by detergent stripping of MVs with cores in the cellular cytoplasm, early in infection. We focused on the prominent palisade layer on the core surface, combining cryo-electron tomography, subtomogram averaging and AlphaFold2 structure prediction. We showed that the palisade is composed of densely packed trimers of the major core protein A10. Trimers display a random order and their classification indicates structural flexibility. A10 on cytoplasmic cores is organized in a similar manner, indicating that the structures obtained in vitro are physiologically relevant. We discuss our results in the context of the VACV replicative cycle, and the assembly and disassembly of the infectious MV.
000613885 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000613885 542__ $$2Crossref$$i2024-02-05$$uhttps://creativecommons.org/licenses/by/4.0
000613885 542__ $$2Crossref$$i2024-02-05$$uhttps://creativecommons.org/licenses/by/4.0
000613885 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000613885 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000613885 7001_ $$0P:(DE-H253)PIP1097097$$aCorroyer-Dulmont, Simon$$b1
000613885 7001_ $$aPražák, Vojtěch$$b2
000613885 7001_ $$00000-0001-5199-5157$$aKhusainov, Iskander$$b3
000613885 7001_ $$0P:(DE-HGF)0$$aBahrami, Karola$$b4
000613885 7001_ $$00000-0002-6049-6664$$aWelsch, Sonja$$b5
000613885 7001_ $$0P:(DE-H253)PIP1085521$$aVasishtan, Daven$$b6
000613885 7001_ $$00000-0001-7686-695X$$aObarska-Kosińska, Agnieszka$$b7
000613885 7001_ $$0P:(DE-H253)PIP1088744$$aThorkelsson, Sigurdur R.$$b8
000613885 7001_ $$0P:(DE-H253)PIP1023782$$aGruenewald, Kay$$b9$$eCorresponding author$$udesy
000613885 7001_ $$0P:(DE-H253)PIP1082957$$aQuemin, Emmanuelle$$b10$$eCorresponding author
000613885 7001_ $$00000-0002-5457-4478$$aTuroňová, Beata$$b11$$eCorresponding author
000613885 7001_ $$00000-0001-8658-2977$$aLocker, Jacomina Krijnse$$b12$$eCorresponding author
000613885 77318 $$2Crossref$$3journal-article$$a10.1038/s41594-024-01218-5$$bSpringer Science and Business Media LLC$$d2024-02-05$$n7$$p1105-1113$$tNature Structural & Molecular Biology$$v31$$x1545-9993$$y2024
000613885 773__ $$0PERI:(DE-600)2131437-8$$a10.1038/s41594-024-01218-5$$gVol. 31, no. 7, p. 1105 - 1113$$n7$$p1105-1113$$tNature structural & molecular biology$$v31$$x1545-9993$$y2024
000613885 8564_ $$uhttps://bib-pubdb1.desy.de/record/613885/files/s41594-024-01218-5.pdf$$yOpenAccess
000613885 8564_ $$uhttps://bib-pubdb1.desy.de/record/613885/files/s41594-024-01218-5.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000613885 909CO $$ooai:bib-pubdb1.desy.de:613885$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000613885 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1097097$$aCentre for Structural Systems Biology$$b1$$kCSSB
000613885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097097$$aExternal Institute$$b1$$kExtern
000613885 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1085521$$aCentre for Structural Systems Biology$$b6$$kCSSB
000613885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085521$$aExternal Institute$$b6$$kExtern
000613885 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1088744$$aCentre for Structural Systems Biology$$b8$$kCSSB
000613885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088744$$aExternal Institute$$b8$$kExtern
000613885 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1023782$$aCentre for Structural Systems Biology$$b9$$kCSSB
000613885 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1082957$$aCentre for Structural Systems Biology$$b10$$kCSSB
000613885 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082957$$aExternal Institute$$b10$$kExtern
000613885 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000613885 9141_ $$y2024
000613885 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000613885 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
000613885 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000613885 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-08-23$$wger
000613885 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000613885 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000613885 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000613885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT STRUCT MOL BIOL : 2022$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000613885 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT STRUCT MOL BIOL : 2022$$d2025-01-02
000613885 9201_ $$0I:(DE-H253)CSSB-LIV-KG-20220525$$kCSSB-LIV-KG$$lCSSB - Leibniz-Institut für Experimentelle Virologie (LIV) - Kay Grünewald$$x0
000613885 980__ $$ajournal
000613885 980__ $$aVDB
000613885 980__ $$aUNRESTRICTED
000613885 980__ $$aI:(DE-H253)CSSB-LIV-KG-20220525
000613885 9801_ $$aFullTexts
000613885 999C5 $$1B Moss$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.virol.2015.02.003$$p619 -$$tVirology$$uMoss, B. Poxvirus membrane biogenesis. Virology 479–480, 619–626 (2015).$$v479–480$$y2015
000613885 999C5 $$1RC Condit$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0065-3527(06)66002-8$$p31 -$$tAdv. Virus Res.$$uCondit, R. C., Moussatche, N. & Traktman, P. In a nutshell: structure and assembly of the vaccinia virion. Adv. Virus Res. 66, 31–124 (2006).$$v66$$y2006
000613885 999C5 $$1M Cyrklaff$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0409825102$$p2772 -$$tProc. Natl Acad. Sci. USA$$uCyrklaff, M. et al. Cryo-electron tomography of vaccinia virus. Proc. Natl Acad. Sci. USA 102, 2772–2777 (2005).$$v102$$y2005
000613885 999C5 $$1C-S Chung$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.80.5.2127-2140.2006$$p2127 -$$tJ. Virol.$$uChung, C.-S. et al. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J. Virol. 80, 2127–2140 (2006).$$v80$$y2006
000613885 999C5 $$1ON Jensen$$2Crossref$$9-- missing cx lookup --$$a10.1128/jvi.70.11.7485-7497.1996$$p7485 -$$tJ. Virol.$$uJensen, O. N. et al. Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. J. Virol. 70, 7485–7497 (1996).$$v70$$y1996
000613885 999C5 $$1K Pedersen$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.74.8.3525-3536.2000$$p3525 -$$tJ. Virol.$$uPedersen, K. et al. Characterization of vaccinia virus intracellular cores: implications for viral uncoating and core structure. J. Virol. 74, 3525–3536 (2000).$$v74$$y2000
000613885 999C5 $$1KB Easterbrook$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-5320(66)80077-1$$p484 -$$tJ. Ultrastruct. Res.$$uEasterbrook, K. B. Controlled degradation of vaccinia virions in vitro: an electron microscopic study. J. Ultrastruct. Res. 14, 484–496 (1966).$$v14$$y1966
000613885 999C5 $$1S Wilton$$2Crossref$$9-- missing cx lookup --$$a10.1006/viro.1995.0061$$p503 -$$tVirology$$uWilton, S., Mohandas, A. R. & Dales, S. Organization of the vaccinia envelope and relationship to the structure of intracellular mature virions. Virology 214, 503–511 (1995).$$v214$$y1995
000613885 999C5 $$1N Moussatche$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.virol.2014.11.020$$p204 -$$tVirology$$uMoussatche, N. & Condit, R. C. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization. Virology 475, 204–218 (2015).$$v475$$y2015
000613885 999C5 $$1J Dubochet$$2Crossref$$9-- missing cx lookup --$$a10.1128/jvi.68.3.1935-1941.1994$$p1935 -$$tJ. Virol.$$uDubochet, J., Adrian, M., Richter, K., Garces, J. & Wittek, R. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy. J. Virol. 68, 1935–1941 (1994).$$v68$$y1994
000613885 999C5 $$1M Hernandez-Gonzalez$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pbio.3002005$$pe3002005 -$$tPLoS Biol.$$uHernandez-Gonzalez, M., Calcraft, T., Nans, A., Rosenthal, P. B. & Way, M. A succession of two viral lattices drives vaccinia virus assembly. PLoS Biol. 21, e3002005 (2023).$$v21$$y2023
000613885 999C5 $$1J Jumper$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03819-2$$p583 -$$tNature$$uJumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).$$v596$$y2021
000613885 999C5 $$1B Moss$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(18)52298-5$$p1355 -$$tJ. Biol. Chem.$$uMoss, B., Ahn, B. Y., Amegadzie, B., Gershon, P. D. & Keck, J. G. Cytoplasmic transcription system encoded by vaccinia virus. J. Biol. Chem. 266, 1355–1358 (1991).$$v266$$y1991
000613885 999C5 $$1M Cyrklaff$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0000420$$pe420 -$$tPLoS ONE$$uCyrklaff, M. et al. Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLoS ONE 2, e420 (2007).$$v2$$y2007
000613885 999C5 $$1FI Schmidt$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2013.06.028$$p464 -$$tCell Rep.$$uSchmidt, F. I. et al. Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies. Cell Rep. 4, 464–476 (2013).$$v4$$y2013
000613885 999C5 $$1D Rodriguez$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1462-5822.2005.00632.x$$p427 -$$tCell. Microbiol.$$uRodriguez, D. et al. A vaccinia virus lacking A10L: viral core proteins accumulate on structures derived from the endoplasmic reticulum. Cell. Microbiol. 8, 427–437 (2006).$$v8$$y2006
000613885 999C5 $$1E Katz$$2Crossref$$9-- missing cx lookup --$$a10.1128/jvi.6.6.717-726.1970$$p717 -$$tJ. Virol.$$uKatz, E. & Moss, B. Vaccinia virus structural polypeptide derived from a high-molecular-weight precursor: formation and integration into virus particles. J. Virol. 6, 717–726 (1970).$$v6$$y1970
000613885 999C5 $$1Y Mirzakhanyan$$2Crossref$$9-- missing cx lookup --$$a10.1128/mbio.01135-23$$pe0113523 -$$tmBio$$uMirzakhanyan, Y., Jankevics, A., Scheltema, R. A. & Gershon, P. D. Combination of deep XLMS with deep learning reveals an ordered rearrangement and assembly of a major protein component of the vaccinia virion. mBio 14, e0113523 (2023).$$v14$$y2023
000613885 999C5 $$1M Mallardo$$2Crossref$$9-- missing cx lookup --$$a10.1091/mbc.12.12.3875$$p3875 -$$tMol. Biol. Cell$$uMallardo, M., Schleich, S. & Locker, J. K. Microtubule-dependent organization of vaccinia virus core-derivd early mRNAs into distinct cytoplasmic structures. Mol. Biol. Cell 12, 3875–3891 (2001).$$v12$$y2001
000613885 999C5 $$1DN Mastronarde$$2Crossref$$9-- missing cx lookup --$$a10.1017/S1431927603445911$$p1182 -$$tMicrosc. Microanal.$$uMastronarde, D. N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 9, 1182–1183 (2003).$$v9$$y2003
000613885 999C5 $$1WJH Hagen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2016.06.007$$p191 -$$tJ. Struct. Biol.$$uHagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).$$v197$$y2017
000613885 999C5 $$1JR Kremer$$2Crossref$$9-- missing cx lookup --$$a10.1006/jsbi.1996.0013$$p71 -$$tJ. Struct. Biol.$$uKremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).$$v116$$y1996
000613885 999C5 $$1B Turoňová$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abd5223$$p203 -$$tScience$$uTuroňová, B. et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203–208 (2020).$$v370$$y2020
000613885 999C5 $$1A Rohou$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2015.08.008$$p216 -$$tJ. Struct. Biol.$$uRohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).$$v192$$y2015
000613885 999C5 $$1W Wan$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature24490$$p394 -$$tNature$$uWan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).$$v551$$y2017
000613885 999C5 $$1B Turoňová$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2017.07.007$$p187 -$$tJ. Struct. Biol.$$uTuroňová, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å. J. Struct. Biol. 199, 187–195 (2017).$$v199$$y2017
000613885 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.3973621$$uTuroňová, B. turonova/Fourier3D: Fourier3D. Zenodo https://doi.org/10.5281/zenodo.3973621 (2020).
000613885 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.7276432$$uSofroniew, N. et al. napari: a multi-dimensional image viewer for Python. Zenodo https://doi.org/10.5281/zenodo.7276432 (2022).
000613885 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.3973623$$uTuroňová, B. turonova/novaSTA: novaSTA. Zenodo https://doi.org/10.5281/zenodo.3973623 (2020).
000613885 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2021.10.04.463034$$uEvans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
000613885 999C5 $$1W Wan$$2Crossref$$9-- missing cx lookup --$$a10.1017/S143192762002187X$$p2516 -$$tMicrosc. Microanal.$$uWan, W., Khavnekar, S., Wagner, J., Erdmann, P. & Baumeister, W. STOPGAP: a software package for subtomogram averaging and refinement. Microsc. Microanal. 26, 2516 (2020).$$v26$$y2020
000613885 999C5 $$1UH Ermel$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.4472$$pe4472 -$$tProtein Sci.$$uErmel, U. H., Arghittu, S. M. & Frangakis, A. S. ArtiaX: an electron tomography toolbox for the interactive handling of sub-tomograms in UCSF ChimeraX. Protein Sci. 31, e4472 (2022).$$v31$$y2022
000613885 999C5 $$1EF Pettersen$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.3943$$p70 -$$tProtein Sci.$$uPettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).$$v30$$y2021
000613885 999C5 $$1CE Zimmerli$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abd9776$$peabd9776 -$$tScience$$uZimmerli, C. E. et al. Nuclear pores dilate and constrict in cellulo. Science 374, eabd9776 (2021).$$v374$$y2021
000613885 999C5 $$1EF Pettersen$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20084$$p1605 -$$tJ. Comput. Chem.$$uPettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).$$v25$$y2004
000613885 999C5 $$1V Rantos$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41596-021-00640-z$$p152 -$$tNat. Protoc.$$uRantos, V., Karius, K. & Kosinski, J. Integrative structural modeling of macromolecular complexes using Assembline. Nat. Protoc. 17, 152–176 (2022).$$v17$$y2022
000613885 999C5 $$1AP Schuller$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03985-3$$p667 -$$tNature$$uSchuller, A. P. et al. The cellular environment shapes the nuclear pore complex architecture. Nature 598, 667–671 (2021).$$v598$$y2021
000613885 999C5 $$1RT Kidmose$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252519007619$$p526 -$$tIUCrJ$$uKidmose, R. T. et al. Namdinator–automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).$$v6$$y2019
000613885 999C5 $$1PV Afonine$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798318009324$$p814 -$$tActa Crystallogr. D$$uAfonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).$$v74$$y2018
000613885 999C5 $$1GD Pintilie$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2010.03.007$$p427 -$$tJ. Struct. Biol.$$uPintilie, G. D., Zhang, J., Goddard, T. D., Chiu, W. & Gossard, D. C. Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J. Struct. Biol. 170, 427–438 (2010).$$v170$$y2010
000613885 999C5 $$1M Laguerre$$2Crossref$$uLaguerre, M., Saux, M., Dubost, J. P. & Carpy, A. MLPP: a program for the calculation of molecular lipophilicity potential in proteins. Pharm. Pharmacol. Commun. 3, 217–222 (1997).$$y1997
000613885 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.7997723$$uTuroňová, B. turonova/cryoCAT: initial release. Zenodo https://doi.org/10.5281/zenodo.7997723 (2023).
000613885 999C5 $$1A Stivala$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btr575$$p3315 -$$tBioinformatics$$uStivala, A., Wybrow, M., Wirth, A., Whisstock, J. C. & Stuckey, P. J. Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27, 3315–3316 (2011).$$v27$$y2011
000613885 999C5 $$1S Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2013.06.004$$p24 -$$tUltramicroscopy$$uChen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).$$v135$$y2013
000613885 999C5 $$1H Ashkenazy$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkw408$$pW344 -$$tNucleic Acids Res.$$uAshkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).$$v44$$y2016