001     613733
005     20250723172322.0
024 7 _ |a 10.1038/s41564-024-01716-8
|2 doi
024 7 _ |a altmetric:164837444
|2 altmetric
024 7 _ |a pmid:38918469
|2 pmid
024 7 _ |a WOS:001254317500003
|2 WOS
024 7 _ |a openalex:W4400007645
|2 openalex
037 _ _ |a PUBDB-2024-05621
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Prazak, Vojtech
|0 P:(DE-H253)PIP1085253
|b 0
245 _ _ |a Molecular plasticity of herpesvirus nuclear egress analysed in situ
260 _ _ |a London
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729083407_2584733
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a The viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC–capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280)
|0 G:(GEPRIS)390874280
|c 390874280
|x 1
536 _ _ |a GRK 2771 - GRK 2771: Mensch und Mikrobe: Reorganisation von Zellkompartimenten und Molekülkomplexen während der Infektion (453548970)
|0 G:(GEPRIS)453548970
|c 453548970
|x 2
542 _ _ |i 2024-06-25
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
542 _ _ |i 2024-06-25
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Mironova, Yuliia
|0 P:(DE-H253)PIP1097729
|b 1
700 1 _ |a Vasishtan, Daven
|0 P:(DE-H253)PIP1085521
|b 2
700 1 _ |a Hagen, Christoph
|0 P:(DE-H253)PIP1080554
|b 3
700 1 _ |a Laugks, Ulrike
|0 P:(DE-H253)PIP1092161
|b 4
700 1 _ |a Jensen, Yannick
|0 P:(DE-H253)PIP1099958
|b 5
700 1 _ |a Sanders, Saskia
|0 P:(DE-H253)PIP1093777
|b 6
700 1 _ |a Heumann, John M.
|0 0000-0001-6751-3028
|b 7
700 1 _ |a Bosse, Jens Bernhard
|0 P:(DE-H253)PIP1082972
|b 8
700 1 _ |a Klupp, Barbara G.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mettenleiter, Thomas C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Grange, Michael
|0 0000-0003-2580-2299
|b 11
|e Corresponding author
700 1 _ |a Gruenewald, Kay
|0 P:(DE-H253)PIP1023782
|b 12
|e Corresponding author
|u desy
773 1 8 |a 10.1038/s41564-024-01716-8
|b Springer Science and Business Media LLC
|d 2024-06-25
|n 7
|p 1842-1855
|3 journal-article
|2 Crossref
|t Nature Microbiology
|v 9
|y 2024
|x 2058-5276
773 _ _ |a 10.1038/s41564-024-01716-8
|g Vol. 9, no. 7, p. 1842 - 1855
|0 PERI:(DE-600)2845610-5
|n 7
|p 1842-1855
|t Nature microbiology
|v 9
|y 2024
|x 2058-5276
856 4 _ |u https://bib-pubdb1.desy.de/record/613733/files/s41564-024-01716-8.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/613733/files/s41564-024-01716-8.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:613733
|p VDB
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 0
|6 P:(DE-H253)PIP1085253
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 1
|6 P:(DE-H253)PIP1097729
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 2
|6 P:(DE-H253)PIP1085521
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 3
|6 P:(DE-H253)PIP1080554
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 4
|6 P:(DE-H253)PIP1092161
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 5
|6 P:(DE-H253)PIP1099958
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 6
|6 P:(DE-H253)PIP1093777
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 8
|6 P:(DE-H253)PIP1082972
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 12
|6 P:(DE-H253)PIP1023782
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MICROBIOL : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT MICROBIOL : 2022
|d 2024-12-20
920 1 _ |0 I:(DE-H253)CSSB-LIV-KG-20220525
|k CSSB-LIV-KG
|l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) - Kay Grünewald
|x 0
920 1 _ |0 I:(DE-H253)CSSB-MHH-JB-20210520
|k CSSB-MHH-JB
|l CSSB-MHH-JB
|x 1
920 1 _ |0 I:(DE-H253)CSSB-CF-CRYO-20210520
|k CSSB-CF-CRYO
|l CSSB-CF-CRYO
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)CSSB-LIV-KG-20220525
980 _ _ |a I:(DE-H253)CSSB-MHH-JB-20210520
980 _ _ |a I:(DE-H253)CSSB-CF-CRYO-20210520
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1016/j.jmb.2013.06.034
|9 -- missing cx lookup --
|1 FL Homa
|p 3415 -
|2 Crossref
|u Homa, F. L. et al. Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J. Mol. Biol. 425, 3415–3428 (2013).
|t J. Mol. Biol.
|v 425
|y 2013
999 C 5 |a 10.1091/mbc.01-06-0308
|9 -- missing cx lookup --
|1 N Panté
|p 425 -
|2 Crossref
|u Panté, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13, 425–434 (2002).
|t Mol. Biol. Cell
|v 13
|y 2002
999 C 5 |a 10.1111/cmi.12044
|9 -- missing cx lookup --
|1 TC Mettenleiter
|p 170 -
|2 Crossref
|u Mettenleiter, T. C., Müller, F., Granzow, H. & Klupp, B. G. The way out: what we know and do not know about herpesvirus nuclear egress. Cell. Microbiol. 15, 170–178 (2013).
|t Cell. Microbiol.
|v 15
|y 2013
999 C 5 |a 10.1146/annurev-virology-111821-105518
|1 BG Klupp
|9 -- missing cx lookup --
|2 Crossref
|u Klupp, B. G. & Mettenleiter, T. C. The knowns and unknowns of herpesvirus nuclear egress. Annu. Rev. Virol. https://doi.org/10.1146/annurev-virology-111821-105518 (2023).
|t Annu. Rev. Virol.
|y 2023
999 C 5 |a 10.1016/j.str.2009.10.017
|9 -- missing cx lookup --
|1 L Peng
|p 47 -
|2 Crossref
|u Peng, L., Ryazantsev, S., Sun, R. & Zhou, Z. H. Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure 18, 47–58 (2010).
|t Structure
|v 18
|y 2010
999 C 5 |a 10.1128/JVI.77.23.12891-12900.2003
|9 -- missing cx lookup --
|1 W Fuchs
|p 12891 -
|2 Crossref
|u Fuchs, W., Granzow, H. & Mettenleiter, T. C. A pseudorabies virus recombinant simultaneously lacking the major tegument proteins encoded by the UL46, UL47, UL48 and UL49 genes is viable in cultured cells. J. Virol. 77, 12891–12900 (2003).
|t J. Virol.
|v 77
|y 2003
999 C 5 |a 10.1016/j.virol.2019.01.005
|9 -- missing cx lookup --
|1 CM Zmasek
|p 29 -
|2 Crossref
|u Zmasek, C. M., Knipe, D. M., Pellett, P. E. & Scheuermann, R. H. Classification of human Herpesviridae proteins using Domain-architecture Aware Inference of Orthologs (DAIO). Virology 529, 29–42 (2019).
|t Virology
|v 529
|y 2019
999 C 5 |a 10.1038/nrm3488
|9 -- missing cx lookup --
|1 B Burke
|p 13 -
|2 Crossref
|u Burke, B. & Stewart, C. L. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell Biol. 14, 13–24 (2013).
|t Nat. Rev. Mol. Cell Biol.
|v 14
|y 2013
999 C 5 |a 10.3390/v4030325
|9 -- missing cx lookup --
|1 J Cibulka
|p 325 -
|2 Crossref
|u Cibulka, J., Fraiberk, M. & Forstova, J. Nuclear actin and lamins in viral infections. Viruses 4, 325–347 (2012).
|t Viruses
|v 4
|y 2012
999 C 5 |a 10.1016/j.cell.2015.11.029
|9 -- missing cx lookup --
|1 C Hagen
|p 1692 -
|2 Crossref
|u Hagen, C. et al. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163, 1692–1701 (2015).
|t Cell
|v 163
|y 2015
999 C 5 |a 10.1016/j.jsb.2011.12.012
|9 -- missing cx lookup --
|1 C Hagen
|p 193 -
|2 Crossref
|u Hagen, C. et al. Correlative VIS-fluorescence and soft X-ray cryo-microscopy and tomography of adherent cells. J. Struct. Biol. 177, 193–201 (2012).
|t J. Struct. Biol.
|v 177
|y 2012
999 C 5 |a 10.1073/pnas.0701757104
|9 -- missing cx lookup --
|1 BG Klupp
|p 7241 -
|2 Crossref
|u Klupp, B. G. et al. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc. Natl Acad. Sci. USA 104, 7241–7246 (2007).
|t Proc. Natl Acad. Sci. USA
|v 104
|y 2007
999 C 5 |a 10.1128/JVI.76.17.8939-8952.2002
|9 -- missing cx lookup --
|1 AE Reynolds
|p 8939 -
|2 Crossref
|u Reynolds, A. E., Wills, E. G., Roller, R. J., Ryckman, B. J. & Baines, J. D. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J. Virol. 76, 8939–8952 (2002).
|t J. Virol.
|v 76
|y 2002
999 C 5 |a 10.1128/JVI.00738-20
|9 -- missing cx lookup --
|1 J Gao
|p e00738 -
|2 Crossref
|u Gao, J., Finnen, R. L., Sherry, M. R., Le Sage, V. & Banfield, B. W. Differentiating the roles of UL16, UL21, and Us3 in the nuclear egress of herpes simplex virus capsids. J. Virol. 94, e00738–20 (2020).
|t J. Virol.
|v 94
|y 2020
999 C 5 |a 10.1128/JVI.03175-13
|9 -- missing cx lookup --
|1 K Yang
|p 3815 -
|2 Crossref
|u Yang, K., Wills, E., Lim, H. Y., Zhou, Z. H. & Baines, J. D. Association of herpes simplex virus pUL31 with capsid vertices and components of the capsid vertex-specific complex. J. Virol. 88, 3815–3825 (2014).
|t J. Virol.
|v 88
|y 2014
999 C 5 |a 10.1128/JVI.05614-11
|9 -- missing cx lookup --
|1 M Leelawong
|p 11675 -
|2 Crossref
|u Leelawong, M., Guo, D. & Smith, G. A. A physical link between the pseudorabies virus capsid and the nuclear egress complex. J. Virol. 85, 11675–11684 (2011).
|t J. Virol.
|v 85
|y 2011
999 C 5 |a 10.1126/science.aao7298
|9 -- missing cx lookup --
|1 X Dai
|p eaao7298 -
|2 Crossref
|u Dai, X. & Zhou, Z. H. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360, eaao7298 (2018).
|t Science
|v 360
|y 2018
999 C 5 |a 10.1128/JVI.00837-11
|9 -- missing cx lookup --
|1 K Toropova
|p 7513 -
|2 Crossref
|u Toropova, K., Huffman, J. B., Homa, F. L. & Conway, J. F. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J. Virol. 85, 7513–7522 (2011).
|t J. Virol.
|v 85
|y 2011
999 C 5 |a 10.1038/nsmb.3212
|9 -- missing cx lookup --
|1 A Huet
|p 531 -
|2 Crossref
|u Huet, A. et al. Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat. Struct. Mol. Biol. 23, 531–539 (2016).
|t Nat. Struct. Mol. Biol.
|v 23
|y 2016
999 C 5 |a 10.1128/JVI.02887-14
|9 -- missing cx lookup --
|1 WH Fan
|p 1502 -
|2 Crossref
|u Fan, W. H. et al. The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid–tegument interface of herpes simplex virus 1. J. Virol. 89, 1502–1511 (2015).
|t J. Virol.
|v 89
|y 2015
999 C 5 |a 10.1128/JVI.01113-07
|9 -- missing cx lookup --
|1 KE Coller
|p 11790 -
|2 Crossref
|u Coller, K. E., Lee, J. I., Ueda, A. & Smith, G. A. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J. Virol. 81, 11790–11797 (2007).
|t J. Virol.
|v 81
|y 2007
999 C 5 |a 10.1128/mBio.00825-17
|9 -- missing cx lookup --
|1 WW Newcomb
|p e00825 -
|2 Crossref
|u Newcomb, W. W. et al. The primary enveloped virion of herpes simplex virus 1: its role in nuclear egress. mBio 8, e00825–17 (2017).
|t mBio
|v 8
|y 2017
999 C 5 |a 10.7554/eLife.56627
|9 -- missing cx lookup --
|1 EB Draganova
|p e56627 -
|2 Crossref
|u Draganova, E. B., Zhang, J., Zhou, Z. H. & Heldwein, E. E. Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. eLife 9, e56627 (2020).
|t eLife
|v 9
|y 2020
999 C 5 |a 10.1371/journal.ppat.1010623
|9 -- missing cx lookup --
|1 MK Thorsen
|p e1010623 -
|2 Crossref
|u Thorsen, M. K., Draganova, E. B. & Heldwein, E. E. The nuclear egress complex of Epstein–Barr virus buds membranes through an oligomerization-driven mechanism. PLoS Pathog. 18, e1010623 (2022).
|t PLoS Pathog.
|v 18
|y 2022
999 C 5 |a 10.1128/JVI.00741-11
|9 -- missing cx lookup --
|1 BG Klupp
|p 8285 -
|2 Crossref
|u Klupp, B. G., Granzow, H. & Mettenleiter, T. C. Nuclear envelope breakdown can substitute for primary envelopment-mediated nuclear egress of herpesviruses. J. Virol. 85, 8285–8292 (2011).
|t J. Virol.
|v 85
|y 2011
999 C 5 |a 10.1128/JVI.78.1.399-412.2004
|9 -- missing cx lookup --
|1 BJ Ryckman
|p 399 -
|2 Crossref
|u Ryckman, B. J. & Roller, R. J. Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3–UL34 catalytic relationship. J. Virol. 78, 399–412 (2004).
|t J. Virol.
|v 78
|y 2004
999 C 5 |a 10.1371/journal.ppat.1009824
|9 -- missing cx lookup --
|1 TH Benedyk
|p e1009824 -
|2 Crossref
|u Benedyk, T. H. et al. pUL21 is a viral phosphatase adaptor that promotes herpes simplex virus replication and spread. PLoS Pathog. 17, e1009824 (2021).
|t PLoS Pathog.
|v 17
|y 2021
999 C 5 |a 10.3390/v7010052
|9 -- missing cx lookup --
|1 P Wild
|p 52 -
|2 Crossref
|u Wild, P. et al. Herpes simplex virus 1 Us3 deletion mutant is infective despite impaired capsid translocation to the cytoplasm. Viruses 7, 52–71 (2015).
|t Viruses
|v 7
|y 2015
999 C 5 |a 10.1016/j.tcb.2011.03.008
|9 -- missing cx lookup --
|1 A Malhas
|p 362 -
|2 Crossref
|u Malhas, A., Goulbourne, C. & Vaux, D. J. The nucleoplasmic reticulum: form and function. Trends Cell Biol. 21, 362–373 (2011).
|t Trends Cell Biol.
|v 21
|y 2011
999 C 5 |a 10.1128/JVI.78.12.6360-6369.2004
|9 -- missing cx lookup --
|1 CC Hoyt
|p 6360 -
|2 Crossref
|u Hoyt, C. C., Bouchard, R. J. & Tyler, K. L. Novel nuclear herniations induced by nuclear localization of a viral protein. J. Virol. 78, 6360–6369 (2004).
|t J. Virol.
|v 78
|y 2004
999 C 5 |a 10.1128/JVI.00090-09
|9 -- missing cx lookup --
|1 F Mou
|p 5181 -
|2 Crossref
|u Mou, F., Wills, E. & Baines, J. D. Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J. Virol. 83, 5181–5191 (2009).
|t J. Virol.
|v 83
|y 2009
999 C 5 |a 10.1128/JVI.74.3.1355-1363.2000
|9 -- missing cx lookup --
|1 GJ Ye
|p 1355 -
|2 Crossref
|u Ye, G. J., Vaughan, K. T., Vallee, R. B. & Roizman, B. The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J. Virol. 74, 1355–1363 (2000).
|t J. Virol.
|v 74
|y 2000
999 C 5 |a 10.1038/s41467-022-29250-3
|1 G Wang
|9 -- missing cx lookup --
|2 Crossref
|u Wang, G. et al. Structures of pseudorabies virus capsids. Nat. Commun. 13, 1533 (2022).
|t Nat. Commun.
|v 13
|y 2022
999 C 5 |a 10.1128/JVI.78.3.1314-1323.2004
|9 -- missing cx lookup --
|1 H Granzow
|p 1314 -
|2 Crossref
|u Granzow, H., Klupp, B. G. & Mettenleiter, T. C. The pseudorabies virus US3 protein is a component of primary and of mature virions. J. Virol. 78, 1314–1323 (2004).
|t J. Virol.
|v 78
|y 2004
999 C 5 |a 10.1146/annurev-virology-021920-115935
|9 -- missing cx lookup --
|1 ERJ Quemin
|p 239 -
|2 Crossref
|u Quemin, E. R. J. et al. Cellular electron cryo-tomography to study virus–host interactions. Annu. Rev. Virol. 7, 239–262 (2020).
|t Annu. Rev. Virol.
|v 7
|y 2020
999 C 5 |a 10.15252/embj.201592359
|9 -- missing cx lookup --
|1 JM Bigalke
|p 2921 -
|2 Crossref
|u Bigalke, J. M. & Heldwein, E. E. Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J. 34, 2921–2936 (2015).
|t EMBO J.
|v 34
|y 2015
999 C 5 |a 10.1128/JVI.80.3.1332-1339.2006
|9 -- missing cx lookup --
|1 K Michael
|p 1332 -
|2 Crossref
|u Michael, K., Klupp, B. G., Mettenleiter, T. C. & Karger, A. Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J. Virol. 80, 1332–1339 (2006).
|t J. Virol.
|v 80
|y 2006
999 C 5 |a 10.1073/pnas.0903535106
|9 -- missing cx lookup --
|1 JA Briggs
|p 11090 -
|2 Crossref
|u Briggs, J. A. et al. Structure and assembly of immature HIV. Proc. Natl Acad. Sci. USA 106, 11090–11095 (2009).
|t Proc. Natl Acad. Sci. USA
|v 106
|y 2009
999 C 5 |a 10.1038/nature13838
|9 -- missing cx lookup --
|1 FK Schur
|p 505 -
|2 Crossref
|u Schur, F. K. et al. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 517, 505–508 (2015).
|t Nature
|v 517
|y 2015
999 C 5 |a 10.1016/j.celrep.2015.11.008
|9 -- missing cx lookup --
|1 T Zeev-Ben-Mordehai
|p 2645 -
|2 Crossref
|u Zeev-Ben-Mordehai, T. et al. Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep. 13, 2645–2652 (2015).
|t Cell Rep.
|v 13
|y 2015
999 C 5 |a 10.1016/j.cell.2012.03.032
|9 -- missing cx lookup --
|1 SD Speese
|p 832 -
|2 Crossref
|u Speese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149, 832–846 (2012).
|t Cell
|v 149
|y 2012
999 C 5 |a 10.1099/0022-1317-82-10-2363
|9 -- missing cx lookup --
|1 BG Klupp
|p 2363 -
|2 Crossref
|u Klupp, B. G., Granzow, H. & Mettenleiter, T. C. Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J. Gen. Virol. 82, 2363–2371 (2001).
|t J. Gen. Virol.
|v 82
|y 2001
999 C 5 |a 10.21769/BioProtoc.1575
|9 -- missing cx lookup --
|1 M Schaffer
|p e1575 -
|2 Crossref
|u Schaffer, M. et al. Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio Protoc. 5, e1575 (2015).
|t Bio Protoc.
|v 5
|y 2015
999 C 5 |a 10.1016/j.jsb.2005.07.007
|9 -- missing cx lookup --
|1 DN Mastronarde
|p 36 -
|2 Crossref
|u Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
|t J. Struct. Biol.
|v 152
|y 2005
999 C 5 |a 10.1016/j.jsb.2016.06.007
|9 -- missing cx lookup --
|1 WJH Hagen
|p 191 -
|2 Crossref
|u Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).
|t J. Struct. Biol.
|v 197
|y 2017
999 C 5 |1 S Zheng
|y 2022
|2 Crossref
|u Zheng, S. et al. AreTomo: an integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X 6, 100068 (2022).
999 C 5 |a 10.1006/jsbi.1996.0013
|9 -- missing cx lookup --
|1 JR Kremer
|p 71 -
|2 Crossref
|u Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
|t J. Struct. Biol.
|v 116
|y 1996
999 C 5 |a 10.1016/j.jsb.2011.05.011
|9 -- missing cx lookup --
|1 JM Heumann
|p 288 -
|2 Crossref
|u Heumann, J. M., Hoenger, A. & Mastronarde, D. N. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. J. Struct. Biol. 175, 288–299 (2011).
|t J. Struct. Biol.
|v 175
|y 2011
999 C 5 |a 10.1006/jsbi.2001.4339
|9 -- missing cx lookup --
|1 JB Heymann
|p 156 -
|2 Crossref
|u Heymann, J. B. Bsoft: image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156–169 (2001).
|t J. Struct. Biol.
|v 133
|y 2001
999 C 5 |a 10.1002/jcc.20084
|9 -- missing cx lookup --
|1 EF Pettersen
|p 1605 -
|2 Crossref
|u Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
|t J. Comput. Chem.
|v 25
|y 2004
999 C 5 |a 10.1002/pro.3943
|9 -- missing cx lookup --
|1 EF Pettersen
|p 70 -
|2 Crossref
|u Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
|t Protein Sci.
|v 30
|y 2021
999 C 5 |a 10.1109/MCSE.2007.55
|9 -- missing cx lookup --
|1 JD Hunter
|p 90 -
|2 Crossref
|u Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
|t Comput. Sci. Eng.
|v 9
|y 2007
999 C 5 |2 Crossref
|u Zhou, Q.-Y., Park, J. & Koltun, V. Open3D: a modern library for 3D data processing. Preprint at https://arxiv.org/abs/1801.09847 (2018).
999 C 5 |a 10.1107/S2059798320014928
|9 -- missing cx lookup --
|1 T Cragnolini
|p 41 -
|2 Crossref
|u Cragnolini, T. et al. TEMPy2: a Python library with improved 3D electron microscopy density-fitting and validation workflows. Acta Crystallogr. D 77, 41–47 (2021).
|t Acta Crystallogr. D
|v 77
|y 2021
999 C 5 |a 10.1038/s41592-019-0686-2
|9 -- missing cx lookup --
|1 P Virtanen
|p 261 -
|2 Crossref
|u Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
|t Nat. Methods
|v 17
|y 2020
999 C 5 |a 10.1038/s41586-020-2649-2
|9 -- missing cx lookup --
|1 CR Harris
|p 357 -
|2 Crossref
|u Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
|t Nature
|v 585
|y 2020
999 C 5 |a 10.1016/0042-6822(59)90068-6
|9 -- missing cx lookup --
|1 AS Kaplan
|p 394 -
|2 Crossref
|u Kaplan, A. S. & Vatter, A. E. A comparison of herpes simplex and pseudorabies viruses. Virology 7, 394–407 (1959).
|t Virology
|v 7
|y 1959
999 C 5 |a 10.1038/nmeth.4074
|9 -- missing cx lookup --
|1 DS Bindels
|p 53 -
|2 Crossref
|u Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017).
|t Nat. Methods
|v 14
|y 2017
999 C 5 |a 10.1073/pnas.1221896110
|9 -- missing cx lookup --
|1 KP Bohannon
|p E1613 -
|2 Crossref
|u Bohannon, K. P., Jun, Y., Gross, S. P. & Smith, G. A. Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. Proc. Natl Acad. Sci. USA 110, E1613–E1620 (2013).
|t Proc. Natl Acad. Sci. USA
|v 110
|y 2013
999 C 5 |a 10.1016/j.ymeth.2016.09.016
|9 -- missing cx lookup --
|1 JY Tinevez
|p 80 -
|2 Crossref
|u Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
|t Methods
|v 115
|y 2017
999 C 5 |a 10.1038/nmeth.2019
|9 -- missing cx lookup --
|1 J Schindelin
|p 676 -
|2 Crossref
|u Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
|t Nat. Methods
|v 9
|y 2012
999 C 5 |a 10.1128/JVI.80.5.2309-2317.2006
|9 -- missing cx lookup --
|1 BR Bowman
|p 2309 -
|2 Crossref
|u Bowman, B. R. et al. Structural characterization of the UL25 DNA-packaging protein from herpes simplex virus type 1. J. Virol. 80, 2309–2317 (2006).
|t J. Virol.
|v 80
|y 2006


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21