| Home > Publications database > Molecular plasticity of herpesvirus nuclear egress analysed in situ > print |
| 001 | 613733 | ||
| 005 | 20250723172322.0 | ||
| 024 | 7 | _ | |a 10.1038/s41564-024-01716-8 |2 doi |
| 024 | 7 | _ | |a altmetric:164837444 |2 altmetric |
| 024 | 7 | _ | |a pmid:38918469 |2 pmid |
| 024 | 7 | _ | |a WOS:001254317500003 |2 WOS |
| 024 | 7 | _ | |a openalex:W4400007645 |2 openalex |
| 037 | _ | _ | |a PUBDB-2024-05621 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Prazak, Vojtech |0 P:(DE-H253)PIP1085253 |b 0 |
| 245 | _ | _ | |a Molecular plasticity of herpesvirus nuclear egress analysed in situ |
| 260 | _ | _ | |a London |c 2024 |b Nature Publishing Group |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1729083407_2584733 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Waiting for fulltext |
| 520 | _ | _ | |a The viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC–capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell. |
| 536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project G:(GEPRIS)390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280) |0 G:(GEPRIS)390874280 |c 390874280 |x 1 |
| 536 | _ | _ | |a GRK 2771 - GRK 2771: Mensch und Mikrobe: Reorganisation von Zellkompartimenten und Molekülkomplexen während der Infektion (453548970) |0 G:(GEPRIS)453548970 |c 453548970 |x 2 |
| 542 | _ | _ | |i 2024-06-25 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
| 542 | _ | _ | |i 2024-06-25 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
| 700 | 1 | _ | |a Mironova, Yuliia |0 P:(DE-H253)PIP1097729 |b 1 |
| 700 | 1 | _ | |a Vasishtan, Daven |0 P:(DE-H253)PIP1085521 |b 2 |
| 700 | 1 | _ | |a Hagen, Christoph |0 P:(DE-H253)PIP1080554 |b 3 |
| 700 | 1 | _ | |a Laugks, Ulrike |0 P:(DE-H253)PIP1092161 |b 4 |
| 700 | 1 | _ | |a Jensen, Yannick |0 P:(DE-H253)PIP1099958 |b 5 |
| 700 | 1 | _ | |a Sanders, Saskia |0 P:(DE-H253)PIP1093777 |b 6 |
| 700 | 1 | _ | |a Heumann, John M. |0 0000-0001-6751-3028 |b 7 |
| 700 | 1 | _ | |a Bosse, Jens Bernhard |0 P:(DE-H253)PIP1082972 |b 8 |
| 700 | 1 | _ | |a Klupp, Barbara G. |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Mettenleiter, Thomas C. |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Grange, Michael |0 0000-0003-2580-2299 |b 11 |e Corresponding author |
| 700 | 1 | _ | |a Gruenewald, Kay |0 P:(DE-H253)PIP1023782 |b 12 |e Corresponding author |u desy |
| 773 | 1 | 8 | |a 10.1038/s41564-024-01716-8 |b Springer Science and Business Media LLC |d 2024-06-25 |n 7 |p 1842-1855 |3 journal-article |2 Crossref |t Nature Microbiology |v 9 |y 2024 |x 2058-5276 |
| 773 | _ | _ | |a 10.1038/s41564-024-01716-8 |g Vol. 9, no. 7, p. 1842 - 1855 |0 PERI:(DE-600)2845610-5 |n 7 |p 1842-1855 |t Nature microbiology |v 9 |y 2024 |x 2058-5276 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/613733/files/s41564-024-01716-8.pdf |y Restricted |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/613733/files/s41564-024-01716-8.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:613733 |p VDB |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 0 |6 P:(DE-H253)PIP1085253 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 1 |6 P:(DE-H253)PIP1097729 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 2 |6 P:(DE-H253)PIP1085521 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 3 |6 P:(DE-H253)PIP1080554 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 4 |6 P:(DE-H253)PIP1092161 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 5 |6 P:(DE-H253)PIP1099958 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 6 |6 P:(DE-H253)PIP1093777 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 8 |6 P:(DE-H253)PIP1082972 |
| 910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 12 |6 P:(DE-H253)PIP1023782 |
| 913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-10-27 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT MICROBIOL : 2022 |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
| 915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b NAT MICROBIOL : 2022 |d 2024-12-20 |
| 920 | 1 | _ | |0 I:(DE-H253)CSSB-LIV-KG-20220525 |k CSSB-LIV-KG |l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) - Kay Grünewald |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)CSSB-MHH-JB-20210520 |k CSSB-MHH-JB |l CSSB-MHH-JB |x 1 |
| 920 | 1 | _ | |0 I:(DE-H253)CSSB-CF-CRYO-20210520 |k CSSB-CF-CRYO |l CSSB-CF-CRYO |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)CSSB-LIV-KG-20220525 |
| 980 | _ | _ | |a I:(DE-H253)CSSB-MHH-JB-20210520 |
| 980 | _ | _ | |a I:(DE-H253)CSSB-CF-CRYO-20210520 |
| 980 | _ | _ | |a UNRESTRICTED |
| 999 | C | 5 | |a 10.1016/j.jmb.2013.06.034 |9 -- missing cx lookup -- |1 FL Homa |p 3415 - |2 Crossref |u Homa, F. L. et al. Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J. Mol. Biol. 425, 3415–3428 (2013). |t J. Mol. Biol. |v 425 |y 2013 |
| 999 | C | 5 | |a 10.1091/mbc.01-06-0308 |9 -- missing cx lookup -- |1 N Panté |p 425 - |2 Crossref |u Panté, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13, 425–434 (2002). |t Mol. Biol. Cell |v 13 |y 2002 |
| 999 | C | 5 | |a 10.1111/cmi.12044 |9 -- missing cx lookup -- |1 TC Mettenleiter |p 170 - |2 Crossref |u Mettenleiter, T. C., Müller, F., Granzow, H. & Klupp, B. G. The way out: what we know and do not know about herpesvirus nuclear egress. Cell. Microbiol. 15, 170–178 (2013). |t Cell. Microbiol. |v 15 |y 2013 |
| 999 | C | 5 | |a 10.1146/annurev-virology-111821-105518 |1 BG Klupp |9 -- missing cx lookup -- |2 Crossref |u Klupp, B. G. & Mettenleiter, T. C. The knowns and unknowns of herpesvirus nuclear egress. Annu. Rev. Virol. https://doi.org/10.1146/annurev-virology-111821-105518 (2023). |t Annu. Rev. Virol. |y 2023 |
| 999 | C | 5 | |a 10.1016/j.str.2009.10.017 |9 -- missing cx lookup -- |1 L Peng |p 47 - |2 Crossref |u Peng, L., Ryazantsev, S., Sun, R. & Zhou, Z. H. Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure 18, 47–58 (2010). |t Structure |v 18 |y 2010 |
| 999 | C | 5 | |a 10.1128/JVI.77.23.12891-12900.2003 |9 -- missing cx lookup -- |1 W Fuchs |p 12891 - |2 Crossref |u Fuchs, W., Granzow, H. & Mettenleiter, T. C. A pseudorabies virus recombinant simultaneously lacking the major tegument proteins encoded by the UL46, UL47, UL48 and UL49 genes is viable in cultured cells. J. Virol. 77, 12891–12900 (2003). |t J. Virol. |v 77 |y 2003 |
| 999 | C | 5 | |a 10.1016/j.virol.2019.01.005 |9 -- missing cx lookup -- |1 CM Zmasek |p 29 - |2 Crossref |u Zmasek, C. M., Knipe, D. M., Pellett, P. E. & Scheuermann, R. H. Classification of human Herpesviridae proteins using Domain-architecture Aware Inference of Orthologs (DAIO). Virology 529, 29–42 (2019). |t Virology |v 529 |y 2019 |
| 999 | C | 5 | |a 10.1038/nrm3488 |9 -- missing cx lookup -- |1 B Burke |p 13 - |2 Crossref |u Burke, B. & Stewart, C. L. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell Biol. 14, 13–24 (2013). |t Nat. Rev. Mol. Cell Biol. |v 14 |y 2013 |
| 999 | C | 5 | |a 10.3390/v4030325 |9 -- missing cx lookup -- |1 J Cibulka |p 325 - |2 Crossref |u Cibulka, J., Fraiberk, M. & Forstova, J. Nuclear actin and lamins in viral infections. Viruses 4, 325–347 (2012). |t Viruses |v 4 |y 2012 |
| 999 | C | 5 | |a 10.1016/j.cell.2015.11.029 |9 -- missing cx lookup -- |1 C Hagen |p 1692 - |2 Crossref |u Hagen, C. et al. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163, 1692–1701 (2015). |t Cell |v 163 |y 2015 |
| 999 | C | 5 | |a 10.1016/j.jsb.2011.12.012 |9 -- missing cx lookup -- |1 C Hagen |p 193 - |2 Crossref |u Hagen, C. et al. Correlative VIS-fluorescence and soft X-ray cryo-microscopy and tomography of adherent cells. J. Struct. Biol. 177, 193–201 (2012). |t J. Struct. Biol. |v 177 |y 2012 |
| 999 | C | 5 | |a 10.1073/pnas.0701757104 |9 -- missing cx lookup -- |1 BG Klupp |p 7241 - |2 Crossref |u Klupp, B. G. et al. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc. Natl Acad. Sci. USA 104, 7241–7246 (2007). |t Proc. Natl Acad. Sci. USA |v 104 |y 2007 |
| 999 | C | 5 | |a 10.1128/JVI.76.17.8939-8952.2002 |9 -- missing cx lookup -- |1 AE Reynolds |p 8939 - |2 Crossref |u Reynolds, A. E., Wills, E. G., Roller, R. J., Ryckman, B. J. & Baines, J. D. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J. Virol. 76, 8939–8952 (2002). |t J. Virol. |v 76 |y 2002 |
| 999 | C | 5 | |a 10.1128/JVI.00738-20 |9 -- missing cx lookup -- |1 J Gao |p e00738 - |2 Crossref |u Gao, J., Finnen, R. L., Sherry, M. R., Le Sage, V. & Banfield, B. W. Differentiating the roles of UL16, UL21, and Us3 in the nuclear egress of herpes simplex virus capsids. J. Virol. 94, e00738–20 (2020). |t J. Virol. |v 94 |y 2020 |
| 999 | C | 5 | |a 10.1128/JVI.03175-13 |9 -- missing cx lookup -- |1 K Yang |p 3815 - |2 Crossref |u Yang, K., Wills, E., Lim, H. Y., Zhou, Z. H. & Baines, J. D. Association of herpes simplex virus pUL31 with capsid vertices and components of the capsid vertex-specific complex. J. Virol. 88, 3815–3825 (2014). |t J. Virol. |v 88 |y 2014 |
| 999 | C | 5 | |a 10.1128/JVI.05614-11 |9 -- missing cx lookup -- |1 M Leelawong |p 11675 - |2 Crossref |u Leelawong, M., Guo, D. & Smith, G. A. A physical link between the pseudorabies virus capsid and the nuclear egress complex. J. Virol. 85, 11675–11684 (2011). |t J. Virol. |v 85 |y 2011 |
| 999 | C | 5 | |a 10.1126/science.aao7298 |9 -- missing cx lookup -- |1 X Dai |p eaao7298 - |2 Crossref |u Dai, X. & Zhou, Z. H. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360, eaao7298 (2018). |t Science |v 360 |y 2018 |
| 999 | C | 5 | |a 10.1128/JVI.00837-11 |9 -- missing cx lookup -- |1 K Toropova |p 7513 - |2 Crossref |u Toropova, K., Huffman, J. B., Homa, F. L. & Conway, J. F. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J. Virol. 85, 7513–7522 (2011). |t J. Virol. |v 85 |y 2011 |
| 999 | C | 5 | |a 10.1038/nsmb.3212 |9 -- missing cx lookup -- |1 A Huet |p 531 - |2 Crossref |u Huet, A. et al. Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat. Struct. Mol. Biol. 23, 531–539 (2016). |t Nat. Struct. Mol. Biol. |v 23 |y 2016 |
| 999 | C | 5 | |a 10.1128/JVI.02887-14 |9 -- missing cx lookup -- |1 WH Fan |p 1502 - |2 Crossref |u Fan, W. H. et al. The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid–tegument interface of herpes simplex virus 1. J. Virol. 89, 1502–1511 (2015). |t J. Virol. |v 89 |y 2015 |
| 999 | C | 5 | |a 10.1128/JVI.01113-07 |9 -- missing cx lookup -- |1 KE Coller |p 11790 - |2 Crossref |u Coller, K. E., Lee, J. I., Ueda, A. & Smith, G. A. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J. Virol. 81, 11790–11797 (2007). |t J. Virol. |v 81 |y 2007 |
| 999 | C | 5 | |a 10.1128/mBio.00825-17 |9 -- missing cx lookup -- |1 WW Newcomb |p e00825 - |2 Crossref |u Newcomb, W. W. et al. The primary enveloped virion of herpes simplex virus 1: its role in nuclear egress. mBio 8, e00825–17 (2017). |t mBio |v 8 |y 2017 |
| 999 | C | 5 | |a 10.7554/eLife.56627 |9 -- missing cx lookup -- |1 EB Draganova |p e56627 - |2 Crossref |u Draganova, E. B., Zhang, J., Zhou, Z. H. & Heldwein, E. E. Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. eLife 9, e56627 (2020). |t eLife |v 9 |y 2020 |
| 999 | C | 5 | |a 10.1371/journal.ppat.1010623 |9 -- missing cx lookup -- |1 MK Thorsen |p e1010623 - |2 Crossref |u Thorsen, M. K., Draganova, E. B. & Heldwein, E. E. The nuclear egress complex of Epstein–Barr virus buds membranes through an oligomerization-driven mechanism. PLoS Pathog. 18, e1010623 (2022). |t PLoS Pathog. |v 18 |y 2022 |
| 999 | C | 5 | |a 10.1128/JVI.00741-11 |9 -- missing cx lookup -- |1 BG Klupp |p 8285 - |2 Crossref |u Klupp, B. G., Granzow, H. & Mettenleiter, T. C. Nuclear envelope breakdown can substitute for primary envelopment-mediated nuclear egress of herpesviruses. J. Virol. 85, 8285–8292 (2011). |t J. Virol. |v 85 |y 2011 |
| 999 | C | 5 | |a 10.1128/JVI.78.1.399-412.2004 |9 -- missing cx lookup -- |1 BJ Ryckman |p 399 - |2 Crossref |u Ryckman, B. J. & Roller, R. J. Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3–UL34 catalytic relationship. J. Virol. 78, 399–412 (2004). |t J. Virol. |v 78 |y 2004 |
| 999 | C | 5 | |a 10.1371/journal.ppat.1009824 |9 -- missing cx lookup -- |1 TH Benedyk |p e1009824 - |2 Crossref |u Benedyk, T. H. et al. pUL21 is a viral phosphatase adaptor that promotes herpes simplex virus replication and spread. PLoS Pathog. 17, e1009824 (2021). |t PLoS Pathog. |v 17 |y 2021 |
| 999 | C | 5 | |a 10.3390/v7010052 |9 -- missing cx lookup -- |1 P Wild |p 52 - |2 Crossref |u Wild, P. et al. Herpes simplex virus 1 Us3 deletion mutant is infective despite impaired capsid translocation to the cytoplasm. Viruses 7, 52–71 (2015). |t Viruses |v 7 |y 2015 |
| 999 | C | 5 | |a 10.1016/j.tcb.2011.03.008 |9 -- missing cx lookup -- |1 A Malhas |p 362 - |2 Crossref |u Malhas, A., Goulbourne, C. & Vaux, D. J. The nucleoplasmic reticulum: form and function. Trends Cell Biol. 21, 362–373 (2011). |t Trends Cell Biol. |v 21 |y 2011 |
| 999 | C | 5 | |a 10.1128/JVI.78.12.6360-6369.2004 |9 -- missing cx lookup -- |1 CC Hoyt |p 6360 - |2 Crossref |u Hoyt, C. C., Bouchard, R. J. & Tyler, K. L. Novel nuclear herniations induced by nuclear localization of a viral protein. J. Virol. 78, 6360–6369 (2004). |t J. Virol. |v 78 |y 2004 |
| 999 | C | 5 | |a 10.1128/JVI.00090-09 |9 -- missing cx lookup -- |1 F Mou |p 5181 - |2 Crossref |u Mou, F., Wills, E. & Baines, J. D. Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J. Virol. 83, 5181–5191 (2009). |t J. Virol. |v 83 |y 2009 |
| 999 | C | 5 | |a 10.1128/JVI.74.3.1355-1363.2000 |9 -- missing cx lookup -- |1 GJ Ye |p 1355 - |2 Crossref |u Ye, G. J., Vaughan, K. T., Vallee, R. B. & Roizman, B. The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J. Virol. 74, 1355–1363 (2000). |t J. Virol. |v 74 |y 2000 |
| 999 | C | 5 | |a 10.1038/s41467-022-29250-3 |1 G Wang |9 -- missing cx lookup -- |2 Crossref |u Wang, G. et al. Structures of pseudorabies virus capsids. Nat. Commun. 13, 1533 (2022). |t Nat. Commun. |v 13 |y 2022 |
| 999 | C | 5 | |a 10.1128/JVI.78.3.1314-1323.2004 |9 -- missing cx lookup -- |1 H Granzow |p 1314 - |2 Crossref |u Granzow, H., Klupp, B. G. & Mettenleiter, T. C. The pseudorabies virus US3 protein is a component of primary and of mature virions. J. Virol. 78, 1314–1323 (2004). |t J. Virol. |v 78 |y 2004 |
| 999 | C | 5 | |a 10.1146/annurev-virology-021920-115935 |9 -- missing cx lookup -- |1 ERJ Quemin |p 239 - |2 Crossref |u Quemin, E. R. J. et al. Cellular electron cryo-tomography to study virus–host interactions. Annu. Rev. Virol. 7, 239–262 (2020). |t Annu. Rev. Virol. |v 7 |y 2020 |
| 999 | C | 5 | |a 10.15252/embj.201592359 |9 -- missing cx lookup -- |1 JM Bigalke |p 2921 - |2 Crossref |u Bigalke, J. M. & Heldwein, E. E. Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J. 34, 2921–2936 (2015). |t EMBO J. |v 34 |y 2015 |
| 999 | C | 5 | |a 10.1128/JVI.80.3.1332-1339.2006 |9 -- missing cx lookup -- |1 K Michael |p 1332 - |2 Crossref |u Michael, K., Klupp, B. G., Mettenleiter, T. C. & Karger, A. Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J. Virol. 80, 1332–1339 (2006). |t J. Virol. |v 80 |y 2006 |
| 999 | C | 5 | |a 10.1073/pnas.0903535106 |9 -- missing cx lookup -- |1 JA Briggs |p 11090 - |2 Crossref |u Briggs, J. A. et al. Structure and assembly of immature HIV. Proc. Natl Acad. Sci. USA 106, 11090–11095 (2009). |t Proc. Natl Acad. Sci. USA |v 106 |y 2009 |
| 999 | C | 5 | |a 10.1038/nature13838 |9 -- missing cx lookup -- |1 FK Schur |p 505 - |2 Crossref |u Schur, F. K. et al. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 517, 505–508 (2015). |t Nature |v 517 |y 2015 |
| 999 | C | 5 | |a 10.1016/j.celrep.2015.11.008 |9 -- missing cx lookup -- |1 T Zeev-Ben-Mordehai |p 2645 - |2 Crossref |u Zeev-Ben-Mordehai, T. et al. Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep. 13, 2645–2652 (2015). |t Cell Rep. |v 13 |y 2015 |
| 999 | C | 5 | |a 10.1016/j.cell.2012.03.032 |9 -- missing cx lookup -- |1 SD Speese |p 832 - |2 Crossref |u Speese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149, 832–846 (2012). |t Cell |v 149 |y 2012 |
| 999 | C | 5 | |a 10.1099/0022-1317-82-10-2363 |9 -- missing cx lookup -- |1 BG Klupp |p 2363 - |2 Crossref |u Klupp, B. G., Granzow, H. & Mettenleiter, T. C. Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J. Gen. Virol. 82, 2363–2371 (2001). |t J. Gen. Virol. |v 82 |y 2001 |
| 999 | C | 5 | |a 10.21769/BioProtoc.1575 |9 -- missing cx lookup -- |1 M Schaffer |p e1575 - |2 Crossref |u Schaffer, M. et al. Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio Protoc. 5, e1575 (2015). |t Bio Protoc. |v 5 |y 2015 |
| 999 | C | 5 | |a 10.1016/j.jsb.2005.07.007 |9 -- missing cx lookup -- |1 DN Mastronarde |p 36 - |2 Crossref |u Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). |t J. Struct. Biol. |v 152 |y 2005 |
| 999 | C | 5 | |a 10.1016/j.jsb.2016.06.007 |9 -- missing cx lookup -- |1 WJH Hagen |p 191 - |2 Crossref |u Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017). |t J. Struct. Biol. |v 197 |y 2017 |
| 999 | C | 5 | |1 S Zheng |y 2022 |2 Crossref |u Zheng, S. et al. AreTomo: an integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X 6, 100068 (2022). |
| 999 | C | 5 | |a 10.1006/jsbi.1996.0013 |9 -- missing cx lookup -- |1 JR Kremer |p 71 - |2 Crossref |u Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996). |t J. Struct. Biol. |v 116 |y 1996 |
| 999 | C | 5 | |a 10.1016/j.jsb.2011.05.011 |9 -- missing cx lookup -- |1 JM Heumann |p 288 - |2 Crossref |u Heumann, J. M., Hoenger, A. & Mastronarde, D. N. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. J. Struct. Biol. 175, 288–299 (2011). |t J. Struct. Biol. |v 175 |y 2011 |
| 999 | C | 5 | |a 10.1006/jsbi.2001.4339 |9 -- missing cx lookup -- |1 JB Heymann |p 156 - |2 Crossref |u Heymann, J. B. Bsoft: image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156–169 (2001). |t J. Struct. Biol. |v 133 |y 2001 |
| 999 | C | 5 | |a 10.1002/jcc.20084 |9 -- missing cx lookup -- |1 EF Pettersen |p 1605 - |2 Crossref |u Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). |t J. Comput. Chem. |v 25 |y 2004 |
| 999 | C | 5 | |a 10.1002/pro.3943 |9 -- missing cx lookup -- |1 EF Pettersen |p 70 - |2 Crossref |u Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). |t Protein Sci. |v 30 |y 2021 |
| 999 | C | 5 | |a 10.1109/MCSE.2007.55 |9 -- missing cx lookup -- |1 JD Hunter |p 90 - |2 Crossref |u Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). |t Comput. Sci. Eng. |v 9 |y 2007 |
| 999 | C | 5 | |2 Crossref |u Zhou, Q.-Y., Park, J. & Koltun, V. Open3D: a modern library for 3D data processing. Preprint at https://arxiv.org/abs/1801.09847 (2018). |
| 999 | C | 5 | |a 10.1107/S2059798320014928 |9 -- missing cx lookup -- |1 T Cragnolini |p 41 - |2 Crossref |u Cragnolini, T. et al. TEMPy2: a Python library with improved 3D electron microscopy density-fitting and validation workflows. Acta Crystallogr. D 77, 41–47 (2021). |t Acta Crystallogr. D |v 77 |y 2021 |
| 999 | C | 5 | |a 10.1038/s41592-019-0686-2 |9 -- missing cx lookup -- |1 P Virtanen |p 261 - |2 Crossref |u Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). |t Nat. Methods |v 17 |y 2020 |
| 999 | C | 5 | |a 10.1038/s41586-020-2649-2 |9 -- missing cx lookup -- |1 CR Harris |p 357 - |2 Crossref |u Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). |t Nature |v 585 |y 2020 |
| 999 | C | 5 | |a 10.1016/0042-6822(59)90068-6 |9 -- missing cx lookup -- |1 AS Kaplan |p 394 - |2 Crossref |u Kaplan, A. S. & Vatter, A. E. A comparison of herpes simplex and pseudorabies viruses. Virology 7, 394–407 (1959). |t Virology |v 7 |y 1959 |
| 999 | C | 5 | |a 10.1038/nmeth.4074 |9 -- missing cx lookup -- |1 DS Bindels |p 53 - |2 Crossref |u Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017). |t Nat. Methods |v 14 |y 2017 |
| 999 | C | 5 | |a 10.1073/pnas.1221896110 |9 -- missing cx lookup -- |1 KP Bohannon |p E1613 - |2 Crossref |u Bohannon, K. P., Jun, Y., Gross, S. P. & Smith, G. A. Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. Proc. Natl Acad. Sci. USA 110, E1613–E1620 (2013). |t Proc. Natl Acad. Sci. USA |v 110 |y 2013 |
| 999 | C | 5 | |a 10.1016/j.ymeth.2016.09.016 |9 -- missing cx lookup -- |1 JY Tinevez |p 80 - |2 Crossref |u Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017). |t Methods |v 115 |y 2017 |
| 999 | C | 5 | |a 10.1038/nmeth.2019 |9 -- missing cx lookup -- |1 J Schindelin |p 676 - |2 Crossref |u Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). |t Nat. Methods |v 9 |y 2012 |
| 999 | C | 5 | |a 10.1128/JVI.80.5.2309-2317.2006 |9 -- missing cx lookup -- |1 BR Bowman |p 2309 - |2 Crossref |u Bowman, B. R. et al. Structural characterization of the UL25 DNA-packaging protein from herpes simplex virus type 1. J. Virol. 80, 2309–2317 (2006). |t J. Virol. |v 80 |y 2006 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|