000613733 001__ 613733
000613733 005__ 20250723172322.0
000613733 0247_ $$2doi$$a10.1038/s41564-024-01716-8
000613733 0247_ $$2altmetric$$aaltmetric:164837444
000613733 0247_ $$2pmid$$apmid:38918469
000613733 0247_ $$2WOS$$aWOS:001254317500003
000613733 0247_ $$2openalex$$aopenalex:W4400007645
000613733 037__ $$aPUBDB-2024-05621
000613733 041__ $$aEnglish
000613733 082__ $$a570
000613733 1001_ $$0P:(DE-H253)PIP1085253$$aPrazak, Vojtech$$b0
000613733 245__ $$aMolecular plasticity of herpesvirus nuclear egress analysed in situ
000613733 260__ $$aLondon$$bNature Publishing Group$$c2024
000613733 3367_ $$2DRIVER$$aarticle
000613733 3367_ $$2DataCite$$aOutput Types/Journal article
000613733 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729083407_2584733
000613733 3367_ $$2BibTeX$$aARTICLE
000613733 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000613733 3367_ $$00$$2EndNote$$aJournal Article
000613733 500__ $$aWaiting for fulltext
000613733 520__ $$aThe viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC–capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell.
000613733 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000613733 536__ $$0G:(GEPRIS)390874280$$aDFG project G:(GEPRIS)390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280)$$c390874280$$x1
000613733 536__ $$0G:(GEPRIS)453548970$$aGRK 2771 - GRK 2771: Mensch und Mikrobe: Reorganisation von Zellkompartimenten und Molekülkomplexen während der Infektion (453548970)$$c453548970$$x2
000613733 542__ $$2Crossref$$i2024-06-25$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000613733 542__ $$2Crossref$$i2024-06-25$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000613733 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000613733 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000613733 7001_ $$0P:(DE-H253)PIP1097729$$aMironova, Yuliia$$b1
000613733 7001_ $$0P:(DE-H253)PIP1085521$$aVasishtan, Daven$$b2
000613733 7001_ $$0P:(DE-H253)PIP1080554$$aHagen, Christoph$$b3
000613733 7001_ $$0P:(DE-H253)PIP1092161$$aLaugks, Ulrike$$b4
000613733 7001_ $$0P:(DE-H253)PIP1099958$$aJensen, Yannick$$b5
000613733 7001_ $$0P:(DE-H253)PIP1093777$$aSanders, Saskia$$b6
000613733 7001_ $$00000-0001-6751-3028$$aHeumann, John M.$$b7
000613733 7001_ $$0P:(DE-H253)PIP1082972$$aBosse, Jens Bernhard$$b8
000613733 7001_ $$0P:(DE-HGF)0$$aKlupp, Barbara G.$$b9
000613733 7001_ $$0P:(DE-HGF)0$$aMettenleiter, Thomas C.$$b10
000613733 7001_ $$00000-0003-2580-2299$$aGrange, Michael$$b11$$eCorresponding author
000613733 7001_ $$0P:(DE-H253)PIP1023782$$aGruenewald, Kay$$b12$$eCorresponding author$$udesy
000613733 77318 $$2Crossref$$3journal-article$$a10.1038/s41564-024-01716-8$$bSpringer Science and Business Media LLC$$d2024-06-25$$n7$$p1842-1855$$tNature Microbiology$$v9$$x2058-5276$$y2024
000613733 773__ $$0PERI:(DE-600)2845610-5$$a10.1038/s41564-024-01716-8$$gVol. 9, no. 7, p. 1842 - 1855$$n7$$p1842-1855$$tNature microbiology$$v9$$x2058-5276$$y2024
000613733 8564_ $$uhttps://bib-pubdb1.desy.de/record/613733/files/s41564-024-01716-8.pdf$$yRestricted
000613733 8564_ $$uhttps://bib-pubdb1.desy.de/record/613733/files/s41564-024-01716-8.pdf?subformat=pdfa$$xpdfa$$yRestricted
000613733 909CO $$ooai:bib-pubdb1.desy.de:613733$$pVDB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1085253$$aCentre for Structural Systems Biology$$b0$$kCSSB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1097729$$aCentre for Structural Systems Biology$$b1$$kCSSB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1085521$$aCentre for Structural Systems Biology$$b2$$kCSSB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1080554$$aCentre for Structural Systems Biology$$b3$$kCSSB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1092161$$aCentre for Structural Systems Biology$$b4$$kCSSB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1099958$$aCentre for Structural Systems Biology$$b5$$kCSSB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1093777$$aCentre for Structural Systems Biology$$b6$$kCSSB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1082972$$aCentre for Structural Systems Biology$$b8$$kCSSB
000613733 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1023782$$aCentre for Structural Systems Biology$$b12$$kCSSB
000613733 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000613733 9141_ $$y2024
000613733 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-27$$wger
000613733 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000613733 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
000613733 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000613733 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MICROBIOL : 2022$$d2024-12-20
000613733 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000613733 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000613733 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000613733 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-20
000613733 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-20
000613733 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000613733 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bNAT MICROBIOL : 2022$$d2024-12-20
000613733 9201_ $$0I:(DE-H253)CSSB-LIV-KG-20220525$$kCSSB-LIV-KG$$lCSSB - Leibniz-Institut für Experimentelle Virologie (LIV) - Kay Grünewald$$x0
000613733 9201_ $$0I:(DE-H253)CSSB-MHH-JB-20210520$$kCSSB-MHH-JB$$lCSSB-MHH-JB$$x1
000613733 9201_ $$0I:(DE-H253)CSSB-CF-CRYO-20210520$$kCSSB-CF-CRYO$$lCSSB-CF-CRYO$$x2
000613733 980__ $$ajournal
000613733 980__ $$aVDB
000613733 980__ $$aI:(DE-H253)CSSB-LIV-KG-20220525
000613733 980__ $$aI:(DE-H253)CSSB-MHH-JB-20210520
000613733 980__ $$aI:(DE-H253)CSSB-CF-CRYO-20210520
000613733 980__ $$aUNRESTRICTED
000613733 999C5 $$1FL Homa$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2013.06.034$$p3415 -$$tJ. Mol. Biol.$$uHoma, F. L. et al. Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J. Mol. Biol. 425, 3415–3428 (2013).$$v425$$y2013
000613733 999C5 $$1N Panté$$2Crossref$$9-- missing cx lookup --$$a10.1091/mbc.01-06-0308$$p425 -$$tMol. Biol. Cell$$uPanté, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13, 425–434 (2002).$$v13$$y2002
000613733 999C5 $$1TC Mettenleiter$$2Crossref$$9-- missing cx lookup --$$a10.1111/cmi.12044$$p170 -$$tCell. Microbiol.$$uMettenleiter, T. C., Müller, F., Granzow, H. & Klupp, B. G. The way out: what we know and do not know about herpesvirus nuclear egress. Cell. Microbiol. 15, 170–178 (2013).$$v15$$y2013
000613733 999C5 $$1BG Klupp$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-virology-111821-105518$$tAnnu. Rev. Virol.$$uKlupp, B. G. & Mettenleiter, T. C. The knowns and unknowns of herpesvirus nuclear egress. Annu. Rev. Virol. https://doi.org/10.1146/annurev-virology-111821-105518 (2023).$$y2023
000613733 999C5 $$1L Peng$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.str.2009.10.017$$p47 -$$tStructure$$uPeng, L., Ryazantsev, S., Sun, R. & Zhou, Z. H. Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure 18, 47–58 (2010).$$v18$$y2010
000613733 999C5 $$1W Fuchs$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.77.23.12891-12900.2003$$p12891 -$$tJ. Virol.$$uFuchs, W., Granzow, H. & Mettenleiter, T. C. A pseudorabies virus recombinant simultaneously lacking the major tegument proteins encoded by the UL46, UL47, UL48 and UL49 genes is viable in cultured cells. J. Virol. 77, 12891–12900 (2003).$$v77$$y2003
000613733 999C5 $$1CM Zmasek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.virol.2019.01.005$$p29 -$$tVirology$$uZmasek, C. M., Knipe, D. M., Pellett, P. E. & Scheuermann, R. H. Classification of human Herpesviridae proteins using Domain-architecture Aware Inference of Orthologs (DAIO). Virology 529, 29–42 (2019).$$v529$$y2019
000613733 999C5 $$1B Burke$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm3488$$p13 -$$tNat. Rev. Mol. Cell Biol.$$uBurke, B. & Stewart, C. L. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell Biol. 14, 13–24 (2013).$$v14$$y2013
000613733 999C5 $$1J Cibulka$$2Crossref$$9-- missing cx lookup --$$a10.3390/v4030325$$p325 -$$tViruses$$uCibulka, J., Fraiberk, M. & Forstova, J. Nuclear actin and lamins in viral infections. Viruses 4, 325–347 (2012).$$v4$$y2012
000613733 999C5 $$1C Hagen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2015.11.029$$p1692 -$$tCell$$uHagen, C. et al. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163, 1692–1701 (2015).$$v163$$y2015
000613733 999C5 $$1C Hagen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2011.12.012$$p193 -$$tJ. Struct. Biol.$$uHagen, C. et al. Correlative VIS-fluorescence and soft X-ray cryo-microscopy and tomography of adherent cells. J. Struct. Biol. 177, 193–201 (2012).$$v177$$y2012
000613733 999C5 $$1BG Klupp$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0701757104$$p7241 -$$tProc. Natl Acad. Sci. USA$$uKlupp, B. G. et al. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc. Natl Acad. Sci. USA 104, 7241–7246 (2007).$$v104$$y2007
000613733 999C5 $$1AE Reynolds$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.76.17.8939-8952.2002$$p8939 -$$tJ. Virol.$$uReynolds, A. E., Wills, E. G., Roller, R. J., Ryckman, B. J. & Baines, J. D. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J. Virol. 76, 8939–8952 (2002).$$v76$$y2002
000613733 999C5 $$1J Gao$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.00738-20$$pe00738 -$$tJ. Virol.$$uGao, J., Finnen, R. L., Sherry, M. R., Le Sage, V. & Banfield, B. W. Differentiating the roles of UL16, UL21, and Us3 in the nuclear egress of herpes simplex virus capsids. J. Virol. 94, e00738–20 (2020).$$v94$$y2020
000613733 999C5 $$1K Yang$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.03175-13$$p3815 -$$tJ. Virol.$$uYang, K., Wills, E., Lim, H. Y., Zhou, Z. H. & Baines, J. D. Association of herpes simplex virus pUL31 with capsid vertices and components of the capsid vertex-specific complex. J. Virol. 88, 3815–3825 (2014).$$v88$$y2014
000613733 999C5 $$1M Leelawong$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.05614-11$$p11675 -$$tJ. Virol.$$uLeelawong, M., Guo, D. & Smith, G. A. A physical link between the pseudorabies virus capsid and the nuclear egress complex. J. Virol. 85, 11675–11684 (2011).$$v85$$y2011
000613733 999C5 $$1X Dai$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aao7298$$peaao7298 -$$tScience$$uDai, X. & Zhou, Z. H. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360, eaao7298 (2018).$$v360$$y2018
000613733 999C5 $$1K Toropova$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.00837-11$$p7513 -$$tJ. Virol.$$uToropova, K., Huffman, J. B., Homa, F. L. & Conway, J. F. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J. Virol. 85, 7513–7522 (2011).$$v85$$y2011
000613733 999C5 $$1A Huet$$2Crossref$$9-- missing cx lookup --$$a10.1038/nsmb.3212$$p531 -$$tNat. Struct. Mol. Biol.$$uHuet, A. et al. Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat. Struct. Mol. Biol. 23, 531–539 (2016).$$v23$$y2016
000613733 999C5 $$1WH Fan$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.02887-14$$p1502 -$$tJ. Virol.$$uFan, W. H. et al. The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid–tegument interface of herpes simplex virus 1. J. Virol. 89, 1502–1511 (2015).$$v89$$y2015
000613733 999C5 $$1KE Coller$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.01113-07$$p11790 -$$tJ. Virol.$$uColler, K. E., Lee, J. I., Ueda, A. & Smith, G. A. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J. Virol. 81, 11790–11797 (2007).$$v81$$y2007
000613733 999C5 $$1WW Newcomb$$2Crossref$$9-- missing cx lookup --$$a10.1128/mBio.00825-17$$pe00825 -$$tmBio$$uNewcomb, W. W. et al. The primary enveloped virion of herpes simplex virus 1: its role in nuclear egress. mBio 8, e00825–17 (2017).$$v8$$y2017
000613733 999C5 $$1EB Draganova$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.56627$$pe56627 -$$teLife$$uDraganova, E. B., Zhang, J., Zhou, Z. H. & Heldwein, E. E. Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. eLife 9, e56627 (2020).$$v9$$y2020
000613733 999C5 $$1MK Thorsen$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.ppat.1010623$$pe1010623 -$$tPLoS Pathog.$$uThorsen, M. K., Draganova, E. B. & Heldwein, E. E. The nuclear egress complex of Epstein–Barr virus buds membranes through an oligomerization-driven mechanism. PLoS Pathog. 18, e1010623 (2022).$$v18$$y2022
000613733 999C5 $$1BG Klupp$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.00741-11$$p8285 -$$tJ. Virol.$$uKlupp, B. G., Granzow, H. & Mettenleiter, T. C. Nuclear envelope breakdown can substitute for primary envelopment-mediated nuclear egress of herpesviruses. J. Virol. 85, 8285–8292 (2011).$$v85$$y2011
000613733 999C5 $$1BJ Ryckman$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.78.1.399-412.2004$$p399 -$$tJ. Virol.$$uRyckman, B. J. & Roller, R. J. Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3–UL34 catalytic relationship. J. Virol. 78, 399–412 (2004).$$v78$$y2004
000613733 999C5 $$1TH Benedyk$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.ppat.1009824$$pe1009824 -$$tPLoS Pathog.$$uBenedyk, T. H. et al. pUL21 is a viral phosphatase adaptor that promotes herpes simplex virus replication and spread. PLoS Pathog. 17, e1009824 (2021).$$v17$$y2021
000613733 999C5 $$1P Wild$$2Crossref$$9-- missing cx lookup --$$a10.3390/v7010052$$p52 -$$tViruses$$uWild, P. et al. Herpes simplex virus 1 Us3 deletion mutant is infective despite impaired capsid translocation to the cytoplasm. Viruses 7, 52–71 (2015).$$v7$$y2015
000613733 999C5 $$1A Malhas$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tcb.2011.03.008$$p362 -$$tTrends Cell Biol.$$uMalhas, A., Goulbourne, C. & Vaux, D. J. The nucleoplasmic reticulum: form and function. Trends Cell Biol. 21, 362–373 (2011).$$v21$$y2011
000613733 999C5 $$1CC Hoyt$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.78.12.6360-6369.2004$$p6360 -$$tJ. Virol.$$uHoyt, C. C., Bouchard, R. J. & Tyler, K. L. Novel nuclear herniations induced by nuclear localization of a viral protein. J. Virol. 78, 6360–6369 (2004).$$v78$$y2004
000613733 999C5 $$1F Mou$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.00090-09$$p5181 -$$tJ. Virol.$$uMou, F., Wills, E. & Baines, J. D. Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J. Virol. 83, 5181–5191 (2009).$$v83$$y2009
000613733 999C5 $$1GJ Ye$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.74.3.1355-1363.2000$$p1355 -$$tJ. Virol.$$uYe, G. J., Vaughan, K. T., Vallee, R. B. & Roizman, B. The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J. Virol. 74, 1355–1363 (2000).$$v74$$y2000
000613733 999C5 $$1G Wang$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-29250-3$$tNat. Commun.$$uWang, G. et al. Structures of pseudorabies virus capsids. Nat. Commun. 13, 1533 (2022).$$v13$$y2022
000613733 999C5 $$1H Granzow$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.78.3.1314-1323.2004$$p1314 -$$tJ. Virol.$$uGranzow, H., Klupp, B. G. & Mettenleiter, T. C. The pseudorabies virus US3 protein is a component of primary and of mature virions. J. Virol. 78, 1314–1323 (2004).$$v78$$y2004
000613733 999C5 $$1ERJ Quemin$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-virology-021920-115935$$p239 -$$tAnnu. Rev. Virol.$$uQuemin, E. R. J. et al. Cellular electron cryo-tomography to study virus–host interactions. Annu. Rev. Virol. 7, 239–262 (2020).$$v7$$y2020
000613733 999C5 $$1JM Bigalke$$2Crossref$$9-- missing cx lookup --$$a10.15252/embj.201592359$$p2921 -$$tEMBO J.$$uBigalke, J. M. & Heldwein, E. E. Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J. 34, 2921–2936 (2015).$$v34$$y2015
000613733 999C5 $$1K Michael$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.80.3.1332-1339.2006$$p1332 -$$tJ. Virol.$$uMichael, K., Klupp, B. G., Mettenleiter, T. C. & Karger, A. Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J. Virol. 80, 1332–1339 (2006).$$v80$$y2006
000613733 999C5 $$1JA Briggs$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0903535106$$p11090 -$$tProc. Natl Acad. Sci. USA$$uBriggs, J. A. et al. Structure and assembly of immature HIV. Proc. Natl Acad. Sci. USA 106, 11090–11095 (2009).$$v106$$y2009
000613733 999C5 $$1FK Schur$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13838$$p505 -$$tNature$$uSchur, F. K. et al. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 517, 505–508 (2015).$$v517$$y2015
000613733 999C5 $$1T Zeev-Ben-Mordehai$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2015.11.008$$p2645 -$$tCell Rep.$$uZeev-Ben-Mordehai, T. et al. Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep. 13, 2645–2652 (2015).$$v13$$y2015
000613733 999C5 $$1SD Speese$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2012.03.032$$p832 -$$tCell$$uSpeese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149, 832–846 (2012).$$v149$$y2012
000613733 999C5 $$1BG Klupp$$2Crossref$$9-- missing cx lookup --$$a10.1099/0022-1317-82-10-2363$$p2363 -$$tJ. Gen. Virol.$$uKlupp, B. G., Granzow, H. & Mettenleiter, T. C. Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J. Gen. Virol. 82, 2363–2371 (2001).$$v82$$y2001
000613733 999C5 $$1M Schaffer$$2Crossref$$9-- missing cx lookup --$$a10.21769/BioProtoc.1575$$pe1575 -$$tBio Protoc.$$uSchaffer, M. et al. Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio Protoc. 5, e1575 (2015).$$v5$$y2015
000613733 999C5 $$1DN Mastronarde$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2005.07.007$$p36 -$$tJ. Struct. Biol.$$uMastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).$$v152$$y2005
000613733 999C5 $$1WJH Hagen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2016.06.007$$p191 -$$tJ. Struct. Biol.$$uHagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).$$v197$$y2017
000613733 999C5 $$1S Zheng$$2Crossref$$uZheng, S. et al. AreTomo: an integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X 6, 100068 (2022).$$y2022
000613733 999C5 $$1JR Kremer$$2Crossref$$9-- missing cx lookup --$$a10.1006/jsbi.1996.0013$$p71 -$$tJ. Struct. Biol.$$uKremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).$$v116$$y1996
000613733 999C5 $$1JM Heumann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2011.05.011$$p288 -$$tJ. Struct. Biol.$$uHeumann, J. M., Hoenger, A. & Mastronarde, D. N. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. J. Struct. Biol. 175, 288–299 (2011).$$v175$$y2011
000613733 999C5 $$1JB Heymann$$2Crossref$$9-- missing cx lookup --$$a10.1006/jsbi.2001.4339$$p156 -$$tJ. Struct. Biol.$$uHeymann, J. B. Bsoft: image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156–169 (2001).$$v133$$y2001
000613733 999C5 $$1EF Pettersen$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20084$$p1605 -$$tJ. Comput. Chem.$$uPettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).$$v25$$y2004
000613733 999C5 $$1EF Pettersen$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.3943$$p70 -$$tProtein Sci.$$uPettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).$$v30$$y2021
000613733 999C5 $$1JD Hunter$$2Crossref$$9-- missing cx lookup --$$a10.1109/MCSE.2007.55$$p90 -$$tComput. Sci. Eng.$$uHunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).$$v9$$y2007
000613733 999C5 $$2Crossref$$uZhou, Q.-Y., Park, J. & Koltun, V. Open3D: a modern library for 3D data processing. Preprint at https://arxiv.org/abs/1801.09847 (2018).
000613733 999C5 $$1T Cragnolini$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798320014928$$p41 -$$tActa Crystallogr. D$$uCragnolini, T. et al. TEMPy2: a Python library with improved 3D electron microscopy density-fitting and validation workflows. Acta Crystallogr. D 77, 41–47 (2021).$$v77$$y2021
000613733 999C5 $$1P Virtanen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-019-0686-2$$p261 -$$tNat. Methods$$uVirtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).$$v17$$y2020
000613733 999C5 $$1CR Harris$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2649-2$$p357 -$$tNature$$uHarris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).$$v585$$y2020
000613733 999C5 $$1AS Kaplan$$2Crossref$$9-- missing cx lookup --$$a10.1016/0042-6822(59)90068-6$$p394 -$$tVirology$$uKaplan, A. S. & Vatter, A. E. A comparison of herpes simplex and pseudorabies viruses. Virology 7, 394–407 (1959).$$v7$$y1959
000613733 999C5 $$1DS Bindels$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.4074$$p53 -$$tNat. Methods$$uBindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56 (2017).$$v14$$y2017
000613733 999C5 $$1KP Bohannon$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1221896110$$pE1613 -$$tProc. Natl Acad. Sci. USA$$uBohannon, K. P., Jun, Y., Gross, S. P. & Smith, G. A. Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. Proc. Natl Acad. Sci. USA 110, E1613–E1620 (2013).$$v110$$y2013
000613733 999C5 $$1JY Tinevez$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ymeth.2016.09.016$$p80 -$$tMethods$$uTinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).$$v115$$y2017
000613733 999C5 $$1J Schindelin$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.2019$$p676 -$$tNat. Methods$$uSchindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).$$v9$$y2012
000613733 999C5 $$1BR Bowman$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.80.5.2309-2317.2006$$p2309 -$$tJ. Virol.$$uBowman, B. R. et al. Structural characterization of the UL25 DNA-packaging protein from herpes simplex virus type 1. J. Virol. 80, 2309–2317 (2006).$$v80$$y2006