000613152 001__ 613152
000613152 005__ 20250715171119.0
000613152 0247_ $$2doi$$a10.1038/s41598-024-56440-4
000613152 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-05578
000613152 0247_ $$2pmid$$a38627427
000613152 0247_ $$2WOS$$aWOS:001207590500018
000613152 0247_ $$2openalex$$aopenalex:W4394838501
000613152 037__ $$aPUBDB-2024-05578
000613152 041__ $$aEnglish
000613152 082__ $$a600
000613152 1001_ $$0P:(DE-H253)PIP1097633$$aPuntel, Denny$$b0
000613152 245__ $$aOut-of-equilibrium charge redistribution in a copper-oxide based superconductor by time-resolved X-ray photoelectron spectroscopy
000613152 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2024
000613152 3367_ $$2DRIVER$$aarticle
000613152 3367_ $$2DataCite$$aOutput Types/Journal article
000613152 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734356803_404543
000613152 3367_ $$2BibTeX$$aARTICLE
000613152 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000613152 3367_ $$00$$2EndNote$$aJournal Article
000613152 520__ $$aCharge-transfer excitations are of paramount importance for understanding the electronic structure of copper-oxide based high-temperature superconductors. In this study, we investigate the response of a $Bi_2Sr_2CaCu_2O_{8+\delta}$ crystal to the charge redistribution induced by an infrared ultrashort pulse. Element-selective time-resolved core-level photoelectron spectroscopy with a high energy resolution allows disentangling the dynamics of oxygen ions with different coordination and bonds thanks to their different chemical shifts. Our experiment shows that the O 1s component arising from the Cu–O planes is significantly perturbed by the infrared light pulse. Conversely, the apical oxygen, also coordinated with Sr ions in the Sr-O planes, remains unaffected. This result highlights the peculiar behavior of the electronic structure of the Cu–O planes. It also unlocks the way to study the out-of-equilibrium electronic structure of copper-oxide-based high-temperature superconductors by identifying the O 1s core-level emission originating from the oxygen ions in the Cu–O planes. This ability could be critical to gain information about the strongly-correlated electron ultrafast dynamical mechanisms in the Cu–O plane in the normal and superconducting phases.
000613152 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000613152 536__ $$0G:(DE-HGF)POF4-6G2$$a6G2 - FLASH (DESY) (POF4-6G2)$$cPOF4-6G2$$fPOF IV$$x1
000613152 536__ $$0G:(DE-H253)F-20200784-EC$$aFS-Proposal: F-20200784 EC (F-20200784-EC)$$cF-20200784-EC$$x2
000613152 536__ $$0G:(DE-Ds200)BMBF-05K22FK2$$a05K22FK2 - Verbundprojekt 05K2022 - 10K-THz-k-ToF: 10K ToF-Impulsmikroskop für FLASH mit Terahertz Anregung und Raumladungsunterdrückung. Teilprojekt 2. (BMBF-05K22FK2)$$cBMBF-05K22FK2$$f05K22FK2$$x3
000613152 536__ $$0G:(GEPRIS)201270818$$aSFB 925 B02 - Ultraschnelle Dynamik in stark korrelierten Systemen (B02) (201270818)$$c201270818$$x4
000613152 536__ $$0G:(EU-Grant)730872$$aCALIPSOplus - Convenient Access to Light Sources Open to Innovation, Science and to the World (730872)$$c730872$$fH2020-INFRAIA-2016-1$$x5
000613152 542__ $$2Crossref$$i2024-04-16$$uhttps://creativecommons.org/licenses/by/4.0
000613152 542__ $$2Crossref$$i2024-04-16$$uhttps://creativecommons.org/licenses/by/4.0
000613152 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000613152 693__ $$0EXP:(DE-H253)F-PG2-20150101$$1EXP:(DE-H253)FLASH-20150101$$6EXP:(DE-H253)F-PG2-20150101$$aFLASH$$fFLASH Beamline PG2$$x0
000613152 7001_ $$0P:(DE-H253)PIP1010190$$aKutnyakhov, Dmytro$$b1
000613152 7001_ $$0P:(DE-H253)PIP1012969$$aWenthaus, Lukas$$b2$$udesy
000613152 7001_ $$0P:(DE-H253)PIP1021265$$aScholz, Markus$$b3$$udesy
000613152 7001_ $$0P:(DE-H253)PIP1019515$$aWind, Nils$$b4$$udesy
000613152 7001_ $$0P:(DE-H253)PIP1023911$$aHeber, Michael$$b5$$udesy
000613152 7001_ $$0P:(DE-H253)PIP1008900$$aBrenner, Günter$$b6
000613152 7001_ $$00000-0002-9886-3255$$aGu, Genda$$b7
000613152 7001_ $$0P:(DE-HGF)0$$aCava, Robert J.$$b8
000613152 7001_ $$0P:(DE-H253)PIP1087366$$aBronsch, Wibke$$b9
000613152 7001_ $$0P:(DE-H253)PIP1029395$$aCilento, Federico$$b10
000613152 7001_ $$0P:(DE-H253)PIP1021381$$aParmigiani, Fulvio$$b11$$eCorresponding author
000613152 7001_ $$0P:(DE-H253)PIP1027495$$aPressacco, Federico$$b12
000613152 77318 $$2Crossref$$3journal-article$$a10.1038/s41598-024-56440-4$$bSpringer Science and Business Media LLC$$d2024-04-16$$n1$$p8775$$tScientific Reports$$v14$$x2045-2322$$y2024
000613152 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-024-56440-4$$gVol. 14, no. 1, p. 8775$$n1$$p8775$$tScientific reports$$v14$$x2045-2322$$y2024
000613152 8564_ $$uhttps://bib-pubdb1.desy.de/record/613152/files/s41598-024-56440-4-4.pdf$$yOpenAccess
000613152 8564_ $$uhttps://bib-pubdb1.desy.de/record/613152/files/s41598-024-56440-4-4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000613152 909CO $$ooai:bib-pubdb1.desy.de:613152$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000613152 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097633$$aExternal Institute$$b0$$kExtern
000613152 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010190$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000613152 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1010190$$aEuropean XFEL$$b1$$kXFEL.EU
000613152 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012969$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000613152 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021265$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000613152 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1021265$$aEuropean XFEL$$b3$$kXFEL.EU
000613152 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019515$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000613152 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023911$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000613152 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1023911$$aEuropean XFEL$$b5$$kXFEL.EU
000613152 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1008900$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000613152 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1087366$$aEuropean XFEL$$b9$$kXFEL.EU
000613152 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087366$$aExternal Institute$$b9$$kExtern
000613152 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029395$$aExternal Institute$$b10$$kExtern
000613152 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1021381$$aExternal Institute$$b11$$kExtern
000613152 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027495$$aDeutsches Elektronen-Synchrotron$$b12$$kDESY
000613152 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1027495$$aEuropean XFEL$$b12$$kXFEL.EU
000613152 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000613152 9131_ $$0G:(DE-HGF)POF4-6G2$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFLASH (DESY)$$x1
000613152 9141_ $$y2024
000613152 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000613152 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000613152 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
000613152 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000613152 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
000613152 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000613152 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
000613152 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-29T15:28:26Z
000613152 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-29T15:28:26Z
000613152 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-29T15:28:26Z
000613152 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000613152 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000613152 9201_ $$0I:(DE-H253)FS-LA-20130416$$kFS-LA$$lLaser Forschung und Entwicklung$$x0
000613152 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x1
000613152 9201_ $$0I:(DE-H253)FS-FLASH-O-20160930$$kFS-FLASH-O$$lFLASH Wissenschaftlicher Nutzerbetrieb$$x2
000613152 9201_ $$0I:(DE-H253)FS-FLASH-B-20160930$$kFS-FLASH-B$$lFLASH Photonen-Strahlführungen und Optiken$$x3
000613152 9201_ $$0I:(DE-H253)FS-FLASH-20140814$$kFS-FLASH$$lFS-FLASH$$x4
000613152 9201_ $$0I:(DE-H253)XFEL_E2_SXP-20240106$$kXFEL_E2_SXP$$lSoft X-Ray Port$$x5
000613152 980__ $$ajournal
000613152 980__ $$aVDB
000613152 980__ $$aI:(DE-H253)FS-LA-20130416
000613152 980__ $$aI:(DE-H253)HAS-User-20120731
000613152 980__ $$aI:(DE-H253)FS-FLASH-O-20160930
000613152 980__ $$aI:(DE-H253)FS-FLASH-B-20160930
000613152 980__ $$aI:(DE-H253)FS-FLASH-20140814
000613152 980__ $$aI:(DE-H253)XFEL_E2_SXP-20240106
000613152 980__ $$aUNRESTRICTED
000613152 9801_ $$aFullTexts
000613152 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1354$$uGiannetti, C. et al. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nature Communications2, https://doi.org/10.1038/ncomms1354 (2011).
000613152 999C5 $$1A Damascelli$$2Crossref$$9-- missing cx lookup --$$a10.1103/revmodphys.75.473$$p473 -$$tRev. Mod. Phys.$$uDamascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541. https://doi.org/10.1103/revmodphys.75.473 (2003).$$v75$$y2003
000613152 999C5 $$1DN Basov$$2Crossref$$9-- missing cx lookup --$$a10.1103/revmodphys.77.721$$p721 -$$tRev. Mod. Phys.$$uBasov, D. N. & Timusk, T. Electrodynamics of high-$${{\rm T}}_{{\rm c}} $$ superconductors. Rev. Mod. Phys. 77, 721–779. https://doi.org/10.1103/revmodphys.77.721 (2005).$$v77$$y2005
000613152 999C5 $$1PA Lee$$2Crossref$$9-- missing cx lookup --$$a10.1103/revmodphys.78.17$$p17 -$$tRev. Mod. Phys.$$uLee, P. A., Nagaosa, N. & Wen, X.-G. Doping a mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85. https://doi.org/10.1103/revmodphys.78.17 (2006).$$v78$$y2006
000613152 999C5 $$1DM Hill$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.38.11331$$p11331 -$$tPhys. Rev. B$$uHill, D. M., Meyer, H. M., Weaver, J. H., Gallo, C. F. & Goretta, K. C. Cu adatom interactions with single- and polycrystalline $${{\rm Bi}}_2{{\rm Ca}}_{1+{{\rm x}}}{{\rm Sr}}_{2-{{\rm x}}}{{\rm Cu}}_2{{\rm O}}_{8+{{\rm y}}} $$. Phys. Rev. B 38, 11331–11336. https://doi.org/10.1103/physrevb.38.11331 (1988).$$v38$$y1988
000613152 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0368-2048(94)02288-7$$uHinnen, C., van Huong, C. N. & Marcus, P. A comparative X-ray photoemission study of $${{\rm Bi}}_2{{\rm Sr}}_2{{\rm CaCu}}_2{{\rm O}}_{{{\rm 8}} +\delta } $$ and $${{\rm Bi}}_{1.6}{{\rm Pb}}_{0.4}{{\rm Sr}}_2{{\rm CaCu}}_2{{\rm O}}_{{\rm 8}+\delta ^{\prime }}$$. J. Electron. Spectrosc. Relat. Phenom. 73, 293–304. https://doi.org/10.1016/0368-2048(94)02288-7 (1995).
000613152 999C5 $$1S Kohiki$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.38.8868$$p8868 -$$tPhys. Rev. B$$uKohiki, S. et al. Structure and bonding of Bi-Sr-Ca-Cu-O crystal by x-ray photoelectron spectroscopy. Phys. Rev. B 38, 8868–8872. https://doi.org/10.1103/physrevb.38.8868 (1988).$$v38$$y1988
000613152 999C5 $$1S Söderholm$$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/8/9/021$$p1307 -$$tJ. Phys. Condens. Matter$$uSöderholm, S. et al. A photoelectron spectroscopy and x-ray absorption study of single crystal with adsorbed Cs: On the origin of the states affected by electron doping and evidence for spatially resolved electron doping. J. Phys. Condens. Matter 8, 1307–1320. https://doi.org/10.1088/0953-8984/8/9/021 (1996).$$v8$$y1996
000613152 999C5 $$1C-T Kuo$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.98.155133$$tPhys. Rev. B$$uKuo, C.-T. et al. Atomic-layer-resolved composition and electronic structure of the cuprate $${{\rm Bi}}_2{{\rm Sr}}_2{{\rm CaCu}}_2{{\rm O}}_{8+\delta } $$ from soft x-ray standing-wave photoemission. Phys. Rev. B 98, 155133. https://doi.org/10.1103/physrevb.98.155133 (2018).$$v98$$y2018
000613152 999C5 $$1MD Kirk$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.99750$$p2071 -$$tAppl. Phys. Lett.$$uKirk, M. D. et al. Scanning tunneling microscopy of the $${{\rm Bi}}_2{{\rm (Ca, Sr)}}_3{{\rm Cu}}_2{{\rm O}}_{{{\rm 8}}+\delta } $$ single crystal and thin film. Appl. Phys. Lett. 52, 2071–2073. https://doi.org/10.1063/1.99750 (1988).$$v52$$y1988
000613152 999C5 $$1PAP Lindberg$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.40.6822$$p6822 -$$tPhys. Rev. B$$uLindberg, P. A. P., Lindau, I. & Spicer, W. E. Quantitative analysis of x-ray photoemission spectra applied to bi$$_2$$sr$$_2$$cacu$$_2$$o$$_8$$ high-temperature superconductors. Phys. Rev. B 40, 6822–6827. https://doi.org/10.1103/physrevb.40.6822 (1989).$$v40$$y1989
000613152 999C5 $$1E Pavarini$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.87.047003$$tPhys. Rev. Lett.$$uPavarini, E., Dasgupta, I., Saha-Dasgupta, T., Jepsen, O. & Andersen, O. K. Band-structure trend in hole-doped cuprates and correlation with $$T_{c {{\rm max }}}$$. Phys. Rev. Lett. 87, 047003. https://doi.org/10.1103/physrevlett.87.047003 (2001).$$v87$$y2001
000613152 999C5 $$1W Hu$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3963$$p705 -$$tNat. Mater.$$uHu, W. et al. Optically enhanced coherent transport in $${{\rm YBa}}_2{{\rm Cu}}_3{{\rm O}}_{6.5}$$ by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711. https://doi.org/10.1038/nmat3963 (2014).$$v13$$y2014
000613152 999C5 $$1R Mankowsky$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13875$$p71 -$$tNature$$uMankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73. https://doi.org/10.1038/nature13875 (2014).$$v516$$y2014
000613152 999C5 $$1B Liu$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevx.10.011053$$tPhys. Rev. X$$uLiu, B. et al. Pump frequency resonances for light-induced incipient superconductivity in $${{\rm YBa}}_2{{\rm Cu}}_3{{\rm O}}_{6.5}$$. Phys. Rev. X 10, 011053. https://doi.org/10.1103/physrevx.10.011053 (2020).$$v10$$y2020
000613152 999C5 $$1CM Varma$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.55.14554$$p14554 -$$tPhys. Rev. B$$uVarma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580. https://doi.org/10.1103/physrevb.55.14554 (1997).$$v55$$y1997
000613152 999C5 $$1D Fournier$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1763$$p905 -$$tNat. Phys.$$uFournier, D. et al. oss of nodal quasiparticle integrity in underdoped $${{\rm YBa}}_2{{\rm Cu}}_3{{\rm O}}_{6+{{\rm x}}} $$. Nat. Phys. 6, 905–911. https://doi.org/10.1038/nphys1763 (2010).$$v6$$y2010
000613152 999C5 $$1J Ghijsen$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.42.2268$$p2268 -$$tPhys. Rev. B$$uGhijsen, J., Tjeng, L. H., Eskes, H., Sawatzky, G. A. & Johnson, R. L. Resonant photoemission study of the electronic structure of $${{\rm CuO}}$$ and $${{\rm Cu}}_{{\rm 2O}}$$. Phys. Rev. B 42, 2268–2274. https://doi.org/10.1103/physrevb.42.2268 (1990).$$v42$$y1990
000613152 999C5 $$1M Qvarford$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.53.r14753$$pR14753 -$$tPhys. Rev. B$$uQvarford, M. et al. Doping dependence of the O $$1s$$ core-level photoemission in Bi-Sr-Ca-Cu-O superconductors. Phys. Rev. B 53, R14753–R14756. https://doi.org/10.1103/physrevb.53.r14753 (1996).$$v53$$y1996
000613152 999C5 $$1J Zaanen$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.55.418$$p418 -$$tPhys. Rev. Lett.$$uZaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421. https://doi.org/10.1103/physrevlett.55.418 (1985).$$v55$$y1985
000613152 999C5 $$1H Romberg$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.42.8768$$p8768 -$$tPhys. Rev. B$$uRomberg, H., Alexander, M., Nücker, N., Adelmann, P. & Fink, J. Electronic structure of the system $$La_{2-x}Sr_xCuO_{4+\delta }$$. Phys. Rev. B 42, 8768–8771. https://doi.org/10.1103/physrevb.42.8768 (1990).$$v42$$y1990
000613152 999C5 $$1Y Ohta$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.46.14022$$p14022 -$$tPhys. Rev. B$$uOhta, Y., Tsutsui, K., Koshibae, W., Shimozato, T. & Maekawa, S. Evolution of the in-gap state in high-$$T_c$$ cuprates. Phys. Rev. B 46, 14022–14033. https://doi.org/10.1103/physrevb.46.14022 (1992).$$v46$$y1992
000613152 999C5 $$1B Keimer$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature14165$$p179 -$$tNature$$uKeimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186. https://doi.org/10.1038/nature14165 (2015).$$v518$$y2015
000613152 999C5 $$1S Peli$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys4112$$p806 -$$tNat. Phys.$$uPeli, S. et al. Mottness at finite doping and charge instabilities in cuprates. Nat. Phys. 13, 806–811. https://doi.org/10.1038/nphys4112 (2017).$$v13$$y2017
000613152 999C5 $$1Y Kohsaka$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1138584$$p1380 -$$tScience$$uKohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385. https://doi.org/10.1126/science.1138584 (2007).$$v315$$y2007
000613152 999C5 $$1P Kuiper$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.62.221$$p221 -$$tPhys. Rev. Lett.$$uKuiper, P., Kruizinga, G., Ghijsen, J., Sawatzky, G. A. & Verweij, H. Character of holes in $${{{\rm Li}}_{{\rm x}}}{{\rm Ni}}_{1-{{\rm x}}}{{\rm O}} $$ and their magnetic behavior. Phys. Rev. Lett. 62, 221–224. https://doi.org/10.1103/physrevlett.62.221 (1989).$$v62$$y1989
000613152 999C5 $$1H Eskes$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.67.1035$$p1035 -$$tPhys. Rev. Lett.$$uEskes, H., Meinders, M. B. J. & Sawatzky, G. A. Anomalous transfer of spectral weight in doped strongly correlated systems. Phys. Rev. Lett. 67, 1035–1038. https://doi.org/10.1103/physrevlett.67.1035 (1991).$$v67$$y1991
000613152 999C5 $$1MBJ Meinders$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.48.3916$$p3916 -$$tPhys. Rev. B$$uMeinders, M. B. J., Eskes, H. & Sawatzky, G. A. Spectral-weight transfer: Breakdown of low-energy-scale sum rules in correlated systems. Phys. Rev. B 48, 3916–3926. https://doi.org/10.1103/physrevb.48.3916 (1993).$$v48$$y1993
000613152 999C5 $$1SL Cooper$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.41.11605$$p11605 -$$tPhys. Rev. B$$uCooper, S. L. et al. Growth of the optical conductivity in the Cu–O planes. Phys. Rev. B 41, 11605–11608. https://doi.org/10.1103/physrevb.41.11605 (1990).$$v41$$y1990
000613152 999C5 $$1CT Chen$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.66.104$$p104 -$$tPhys. Rev. Lett.$$uChen, C. T. et al. Electronic states in $${{{\rm La}}_{2-{{\rm x}}}}{{{\rm Sr}}_{{\rm x}}}{{\rm CuO}}_{{{\rm 8}}+\delta } $$ probed by soft-x-ray absorption. Phys. Rev. Lett. 66, 104–107. https://doi.org/10.1103/physrevlett.66.104 (1991).$$v66$$y1991
000613152 999C5 $$1MS Hybertsen$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.45.10032$$p10032 -$$tPhys. Rev. B$$uHybertsen, M. S., Stechel, E. B., Foulkes, W. M. C. & Schlüter, M. Model for low-energy electronic states probed by x-ray absorption in high-$$T_c$$ cuprates. Phys. Rev. B 45, 10032–10050. https://doi.org/10.1103/physrevb.45.10032 (1992).$$v45$$y1992
000613152 999C5 $$1DR Baykusheva$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevx.12.011013$$tPhys. Rev. X$$uBaykusheva, D. R. et al. Ultrafast renormalization of the on-site Coulomb repulsion in a cuprate superconductor. Phys. Rev. X 12, 011013. https://doi.org/10.1103/physrevx.12.011013 (2022).$$v12$$y2022
000613152 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aar1998$$uCilento, F. et al. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates. Sci. Adv. https://doi.org/10.1126/sciadv.aar1998 (2018).
000613152 999C5 $$1HM Meyer$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.38.6500$$p6500 -$$tPhys. Rev. B$$uMeyer, H. M. et al. Electronic structures of the $${{\rm YBa}}_2{{\rm Cu}}_3{{\rm O}}_{7-{{\rm x}}} $$ surface and its modification by sputtering and adatoms of Ti and Cu. Phys. Rev. B 38, 6500–6512. https://doi.org/10.1103/physrevb.38.6500 (1988).$$v38$$y1988
000613152 999C5 $$1F Parmigiani$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.43.3085$$p3085 -$$tPhys. Rev. B$$uParmigiani, F. et al. O 1$$s$$ core levels in $${{\rm Bi}}_2{{\rm Sr}}_2{{\rm CaCu}}_2{{\rm O}}_{8+\delta } $$ single crystals. Phys. Rev. B 43, 3085–3090. https://doi.org/10.1103/physrevb.43.3085 (1991).$$v43$$y1991
000613152 999C5 $$1M Nagoshi$$2Crossref$$9-- missing cx lookup --$$a10.1016/0368-2048(93)80022-e$$p309 -$$tJ. Electron Spectrosc. Relat. Phenom.$$uNagoshi, M. et al. O1s core levels of Bi-Sr-Ca-Cu-O superconductors studied by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 61, 309–322. https://doi.org/10.1016/0368-2048(93)80022-e (1993).$$v61$$y1993
000613152 999C5 $$1M Nagoshi$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.51.9352$$p9352 -$$tPhys. Rev. B$$uNagoshi, M., Syono, Y., Tachiki, M. & Fukuda, Y. Core-level binding energies of Ba, Sr, Ca, and Y for high-$$T_C$$ superconductors and related oxides: A measure of hole concentration. Phys. Rev. B 51, 9352–9355. https://doi.org/10.1103/physrevb.51.9352 (1995).$$v51$$y1995
000613152 999C5 $$1JA Leiro$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.52.82$$p82 -$$tPhys. Rev. B$$uLeiro, J. A., Heinonen, M. H. & Elboussiri, K. XPS study of the O $$1s$$ spectra of $${{\rm (Bi, Pb)}}_2{{\rm Sr}}_2{{\rm CaCu}}_2{{\rm O}}_{{\rm x}}$$ and $${{\rm Bi}}_2{{\rm Sr}}_2{{\rm CaCu}}_2{{\rm O}}_{{\rm x}}$$. Phys. Rev. B 52, 82–84. https://doi.org/10.1103/physrevb.52.82 (1995).$$v52$$y1995
000613152 999C5 $$1M Qvarford$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.51.410$$p410 -$$tPhys. Rev. B$$uQvarford, M. et al. Resonant valence-band and Cu 3$$p$$ photoemission at the Cu $$L_3$$ treshold of $${{\rm Bi}}_2{{\rm Sr}}_2{{\rm CuO}}_6$$ and $${{\rm Bi}}_2{{\rm Sr}}_2{{\rm CaCu}}_2{{\rm O}}_8$$. Phys. Rev. B 51, 410–416. https://doi.org/10.1103/physrevb.51.410 (1995).$$v51$$y1995
000613152 999C5 $$1P Lele$$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4534(96)00344-9$$p278 -$$tPhysica C$$uLele, P. & Nigavekar, A. S. Interface mechanism of Co/BiSrCaCuO system studied by XPS and UPS techniques. Physica C 266, 278–284. https://doi.org/10.1016/0921-4534(96)00344-9 (1996).$$v266$$y1996
000613152 999C5 $$1S Hellmann$$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/14/1/013062$$tNew J. Phys.$$uHellmann, S. et al. Time-resolved x-ray photoelectron spectroscopy at FLASH. New J. Phys. 14, 013062. https://doi.org/10.1088/1367-2630/14/1/013062 (2012).$$v14$$y2012
000613152 999C5 $$1D Kutnyakhov$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5118777$$tRev. Sci. Instrum.$$uKutnyakhov, D. et al. Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser. Rev. Sci. Instrum. 91, 013109. https://doi.org/10.1063/1.5118777 (2020).$$v91$$y2020
000613152 999C5 $$1RP Xian$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41597-020-00769-8$$tSci. Data.$$uXian, R. P. et al. An open-source, end-to-end workflow for multidimensional photoemission spectroscopy. Sci. Data.https://doi.org/10.1038/s41597-020-00769-8 (2020).$$y2020
000613152 999C5 $$1M Drescher$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01143$$p803 -$$tNature$$uDrescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807. https://doi.org/10.1038/nature01143 (2002).$$v419$$y2002
000613152 999C5 $$1P Finetti$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevx.7.021043$$tPhys. Rev. X$$uFinetti, P. et al. Pulse duration of seeded free-electron lasers. Phys. Rev. X 7, 021043. https://doi.org/10.1103/physrevx.7.021043 (2017).$$v7$$y2017
000613152 999C5 $$1PK Maroju$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2005-6$$p386 -$$tNature$$uMaroju, P. K. et al. Attosecond pulse shaping using a seeded free-electron laser. Nature 578, 386–391. https://doi.org/10.1038/s41586-020-2005-6 (2020).$$v578$$y2020
000613152 999C5 $$2Crossref$$uWenthaus, L. et al., New insights into the laser-assisted photoelectric effect from solid-state surfaces, submitted (2023).
000613152 999C5 $$1L Miaja-Avila$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.97.113604$$tPhys. Rev. Lett.$$uMiaja-Avila, L. et al. Laser-assisted photoelectric effect from surfaces. Phys. Rev. Lett. 97, 113604. https://doi.org/10.1103/physrevlett.97.113604 (2006).$$v97$$y2006
000613152 999C5 $$1G Saathoff$$2Crossref$$9-- missing cx lookup --$$a10.1103/physreva.77.022903$$tPhys. Rev. A$$uSaathoff, G., Miaja-Avila, L., Aeschlimann, M., Murnane, M. M. & Kapteyn, H. C. Laser-assisted photoemission from surfaces. Phys. Rev. A 77, 022903. https://doi.org/10.1103/physreva.77.022903 (2008).$$v77$$y2008
000613152 999C5 $$1S Hellmann$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.105.187401$$tPhys. Rev. Lett.$$uHellmann, S. et al. Ultrafast melting of a charge-density wave in the Mott insulator $$1T-{{\rm TaS}}_2 $$. Phys. Rev. Lett. 105, 187401. https://doi.org/10.1103/physrevlett.105.187401 (2010).$$v105$$y2010
000613152 999C5 $$1L Jönsson$$2Crossref$$9-- missing cx lookup --$$a10.1364/JOSAB.4.001422$$p1422 -$$tJ. Opt. Soc. Am. B$$uJönsson, L. Energy shifts due to the ponderomotive potential. J. Opt. Soc. Am. B 4, 1422–1425. https://doi.org/10.1364/JOSAB.4.001422 (1987).$$v4$$y1987
000613152 999C5 $$1M Dell’Angela$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4914892$$tStruct. Dyn.$$uDell’Angela, M. et al. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer. Struct. Dyn. 2, 025101. https://doi.org/10.1063/1.4914892 (2015).$$v2$$y2015
000613152 999C5 $$1L-P Oloff$$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/16/12/123045$$tNew J. Phys.$$uOloff, L.-P. et al. Time-resolved HAXPES at SACLA: Probe and pump pulse-induced space-charge effects. New J. Phys. 16, 123045. https://doi.org/10.1088/1367-2630/16/12/123045 (2014).$$v16$$y2014
000613152 999C5 $$1M Martins$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2364148$$tRev. Sci. Instrum.$$uMartins, M. et al. Monochromator beamline for FLASH. Rev. Sci. Instrum. 77, 115108. https://doi.org/10.1063/1.2364148 (2006).$$v77$$y2006
000613152 999C5 $$1N Gerasimova$$2Crossref$$9-- missing cx lookup --$$a10.1080/09500340.2011.588344$$p1480 -$$tJ. Mod. Opt.$$uGerasimova, N., Dziarzhytski, S. & Feldhaus, J. The monochromator beamline at flash: Performance, capabilities and upgrade plans. J. Mod. Opt. 58, 1480–1485. https://doi.org/10.1080/09500340.2011.588344 (2011).$$v58$$y2011
000613152 999C5 $$1M Seidel$$2Crossref$$9-- missing cx lookup --$$a10.1002/lpor.202100268$$p2100268 -$$tLaser Photon. Rev.$$uSeidel, M. et al. Ultrafast MHz-rate burst-mode pump-probe laser for the FLASH FEL facility based on nonlinear compression of ps-level pulses from an Yb-amplifier chain. Laser Photon. Rev. 16, 2100268. https://doi.org/10.1002/lpor.202100268 (2022) arXiv:2105.05882.$$v16$$y2022
000613152 999C5 $$1G Schönhense$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2015.05.015$$p488 -$$tUltramicroscopy$$uSchönhense, G. et al. Correction of the deterministic part of space-charge interaction in momentum microscopy of charged particles. Ultramicroscopy 159, 488–496. https://doi.org/10.1016/j.ultramic.2015.05.015 (2015).$$v159$$y2015
000613152 999C5 $$1M Dendzik$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevlett.125.096401$$tPhys. Rev. Lett.$$uDendzik, M. et al. Observation of an excitonic mott transition through ultrafast core-cum-conduction photoemission spectroscopy. Phys. Rev. Lett. 125, 096401. https://doi.org/10.1103/physrevlett.125.096401 (2020).$$v125$$y2020
000613152 999C5 $$1G Schönhense$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0046567$$tRev. Sci. Instrum.$$uSchönhense, G. et al. Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens. Rev. Sci. Instrum. 92, 053703. https://doi.org/10.1063/5.0046567 (2021).$$v92$$y2021
000613152 999C5 $$1D Curcio$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.104.L161104$$pL161104 -$$tPhys. Rev. B$$uCurcio, D. et al. Ultrafast electronic linewidth broadening in the C $$1s$$ core level of graphene. Phys. Rev. B 104, L161104. https://doi.org/10.1103/PhysRevB.104.L161104 (2021).$$v104$$y2021
000613152 999C5 $$1S Doniach$$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/3/2/010$$p285 -$$tJ. Phys. C Solid State Phys.$$uDoniach, S. & Sunjic, M. Many-electron singularity in x-ray photoemission and x-ray line spectra from metals. J. Phys. C Solid State Phys. 3, 285–291. https://doi.org/10.1088/0022-3719/3/2/010 (1970).$$v3$$y1970
000613152 999C5 $$1DA Shirley$$2Crossref$$9-- missing cx lookup --$$a10.1103/physrevb.5.4709$$p4709 -$$tPhys. Rev. B$$uShirley, D. A. High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714. https://doi.org/10.1103/physrevb.5.4709 (1972).$$v5$$y1972