M-Engine

Microcomb Photonic Engine

CoordinatorTobias Herr
Grant period2023-12-01 - 2026-11-30
Funding bodyEuropean Union
 CORDIS
Call numberHORIZON-EIC-2023-TRANSITION-01
Grant number101137000
IdentifierG:(EU-Grant)101137000

Note: M-ENGINE proposes a unique solution to the rapidly increasing bandwidth demands of data centers. With the massive growth of AI and social media in an increasingly connected world, data centers are expected to account for 20% of Europe's energy use by 2030, posing a significant challenge to meet the EU's climate goals. Current solutions to increase bandwidth in optical communications involve adding more single-channel lasers, which neither meets the capacity needs nor the energy requirements. Our proposal offers a scalable solution based on the Nobel prize-winning technology of optical frequency combs to provide highly coherent multi-channel lasers for high-capacity, low energy consumption data transmission. M-ENGINE's solution can replace 100s of individual lasers used in connecting data centers with just one compact system. The proposal combines Enlightra's photonic chip technology with X-Celeprint's cutting-edge solution of micro-transfer printing for scalable heterogeneous integration of all necessary photonic and electronic components. Eblana photonics’ high-power distributed feedback lasers will be transformed for transfer printing on the wafer scale, while Deutsches Elektronen-Synchrotron (DESY) and Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) will contribute recent breakthroughs in chip-integrated frequency combs enabling increased efficiency, stability, and equalized power of the generated data channels. Dublin City University (DCU) will perform independent performance testing for telecom before test devices are sent out to customers for pilot projects. The result will be a scalable photonic chip engine meeting future data needs with reliability, long-term operation, and a clear business case. M-ENGINE's primary market focus will be data centers, but it will have the flexibility to address related markets, such as photonic computing. The consortium aims to create a viable solution in 5 years when the market is expected to be valued at €14Bn.
   

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ;
Attosecond-level synchronisation of chip-integrated oscillators
[10.3204/PUBDB-2025-04371]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Preprint  ;  ;  ;
Quadrature squeezing in a nanophotonic microresonator
[10.3204/PUBDB-2025-01534]  GO OpenAccess  Download fulltext Files  Download fulltextFulltext by arXiv.org BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;
Quadrature squeezing in a nanophotonic microresonator
Nature Communications 16(1), 10791 () [10.1038/s41467-025-66703-x]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Record created 2024-07-17, last modified 2024-07-17



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)