001     611266
005     20250723171846.0
024 7 _ |a 10.1039/D4CY00439F
|2 doi
024 7 _ |a 2044-4753
|2 ISSN
024 7 _ |a 2044-4761
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-04873
|2 datacite_doi
024 7 _ |a WOS:001253329200001
|2 WOS
024 7 _ |a openalex:W4400009746
|2 openalex
037 _ _ |a PUBDB-2024-04873
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gili, Albert
|0 P:(DE-H253)PIP1095723
|b 0
|e Corresponding author
245 _ _ |a One-pot synthesis of iron-doped ceria catalysts for tandem carbon dioxide hydrogenation
260 _ _ |a London
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1722523457_2392507
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on the one-pot synthesis of inexpensive and abundant CeO2 and 1.5, 4.5, and 9 mol% Fe-doped ceria (Ce1−xFexO2−δ) systems and their catalytic activity for tandem CO2 hydrogenation. XAFS and XRD demonstrate that oxygen vacancies are generated via two mechanisms: firstly, by the substitution of Ce4+ by Fe3+ in the lattice and the subsequent loss of oxygen anions. Secondly, by the partial reduction of Ce4+ to Ce3+, which is enhanced by the presence of Fe. All the samples tested show high activity for CO2 hydrogenation and the production of CO, CH4, and light (C2–C4) alkanes and alkenes, with the 9 mol% Fe-doped CeO2 showing the best performance in terms of CO2 reaction rate and product selectivity. During reaction, Fe exsolves/seggregates from the ceria, resulting in particles decorating the surface of the catalyst and increasing the reaction rates of CO2. This system is composed of two functionalities, the oxygen vacancy and the Fe, whose close vicinity results in a high selectivity toward CO and CH4 detrimental to the more valuable hydrocarbons. A rather complex interplay between the two functionalities, their interface, and the particle size of the catalysts exists for this tandem reaction network on this catalytic system and deserves further studies.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project 390540038 - EXC 2008: Unifying Systems in Catalysis "UniSysCat" (390540038)
|0 G:(GEPRIS)390540038
|c 390540038
|x 1
536 _ _ |a DFG project 403371556 - Hochauflösendes Raster-Transmissionselektronenmikroskop (300kV) (403371556)
|0 G:(GEPRIS)403371556
|c 403371556
|x 2
536 _ _ |a FS-Proposal: II-20210010 (II-20210010)
|0 G:(DE-H253)II-20210010
|c II-20210010
|x 3
542 _ _ |i 2024-06-25
|2 Crossref
|u http://creativecommons.org/licenses/by/3.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.1-20150101
|6 EXP:(DE-H253)P-P02.1-20150101
|x 0
700 1 _ |a Bekheet, Maged F.
|0 P:(DE-H253)PIP1014573
|b 1
700 1 _ |a Thimm, Franziska
|b 2
700 1 _ |a Bischoff, Benjamin
|0 P:(DE-H253)PIP1092414
|b 3
700 1 _ |a Geske, Michael
|b 4
700 1 _ |a Konrad, Martin
|b 5
700 1 _ |a Praetz, Sebastian
|0 P:(DE-H253)PIP1030718
|b 6
700 1 _ |a Schlesiger, Christopher
|0 P:(DE-H253)PIP1085271
|b 7
700 1 _ |a Selve, Sören
|b 8
700 1 _ |a Gurlo, Aleksander
|0 P:(DE-H253)PIP1008033
|b 9
700 1 _ |a Rosowski, Frank
|b 10
700 1 _ |a Schomäcker, Reinhard
|0 0000-0003-3106-3904
|b 11
773 1 8 |a 10.1039/d4cy00439f
|b Royal Society of Chemistry (RSC)
|d 2024-01-01
|n 15
|p 4174-4186
|3 journal-article
|2 Crossref
|t Catalysis Science & Technology
|v 14
|y 2024
|x 2044-4753
773 _ _ |a 10.1039/D4CY00439F
|g p. 10.1039.D4CY00439F
|0 PERI:(DE-600)2595090-3
|n 15
|p 4174-4186
|t Catalysis science & technology
|v 14
|y 2024
|x 2044-4753
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/611266/files/d4cy00439f.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/611266/files/d4cy00439f.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:611266
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1095723
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1014573
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1092414
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1030718
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1085271
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1008033
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-02-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-02-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CATAL SCI TECHNOL : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CATAL SCI TECHNOL : 2022
|d 2024-12-19
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1021/cr020725g
|9 -- missing cx lookup --
|1 McIntosh
|p 4845 -
|2 Crossref
|t Chem. Rev.
|v 104
|y 2004
999 C 5 |a 10.3390/membranes9090108
|9 -- missing cx lookup --
|1 Gili
|p 108 -
|2 Crossref
|t Membranes
|v 9
|y 2019
999 C 5 |a 10.1021/acscatal.8b00330
|9 -- missing cx lookup --
|1 Gänzler
|p 4800 -
|2 Crossref
|t ACS Catal.
|v 8
|y 2018
999 C 5 |a 10.1039/C8CE01726C
|9 -- missing cx lookup --
|1 Bekheet
|p 439 -
|2 Crossref
|t CrystEngComm
|v 38
|y 2019
999 C 5 |a 10.1002/anie.201503022
|9 -- missing cx lookup --
|1 Kopelent
|p 8728 -
|2 Crossref
|t Angew. Chem., Int. Ed.
|v 54
|y 2015
999 C 5 |a 10.1016/j.catcom.2015.12.011
|9 -- missing cx lookup --
|1 Liu
|p 1 -
|2 Crossref
|t Catal. Commun.
|v 76
|y 2016
999 C 5 |a 10.1039/c5cc10643e
|9 -- missing cx lookup --
|1 Wu
|p 5003 -
|2 Crossref
|t Chem. Commun.
|v 52
|y 2016
999 C 5 |a 10.1126/science.1240148
|9 -- missing cx lookup --
|1 Cargnello
|p 771 -
|2 Crossref
|t Science
|v 341
|y 2013
999 C 5 |a 10.1038/srep05757
|9 -- missing cx lookup --
|1 Channei
|p 5757 -
|2 Crossref
|t Sci. Rep.
|v 4
|y 2014
999 C 5 |a 10.1007/s10854-018-9060-x
|9 -- missing cx lookup --
|1 Soni
|p 10141 -
|2 Crossref
|t J. Mater. Sci.: Mater. Electron.
|v 29
|y 2018
999 C 5 |a 10.1039/D3TA01519J
|9 -- missing cx lookup --
|1 Ye
|p 10646 -
|2 Crossref
|t J. Mater. Chem. A
|v 11
|y 2023
999 C 5 |a 10.1016/j.ssi.2004.01.006
|9 -- missing cx lookup --
|1 Zhang
|p 203 -
|2 Crossref
|t Solid State Ionics
|v 167
|y 2004
999 C 5 |a 10.1016/j.jallcom.2010.09.103
|9 -- missing cx lookup --
|1 Zheng
|p 546 -
|2 Crossref
|t J. Alloys Compd.
|v 509
|y 2011
999 C 5 |a 10.1021/acs.langmuir.7b03998
|9 -- missing cx lookup --
|1 Sudarsanam
|p 2663 -
|2 Crossref
|t Langmuir
|v 34
|y 2018
999 C 5 |a 10.1016/j.jcis.2019.09.079
|9 -- missing cx lookup --
|1 Zhang
|p 163 -
|2 Crossref
|t J. Colloid Interface Sci.
|v 558
|y 2020
999 C 5 |a 10.1039/c5cp07788e
|9 -- missing cx lookup --
|1 Torrente-Murciano
|p 15496 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 18
|y 2016
999 C 5 |a 10.1038/nchem.2794
|9 -- missing cx lookup --
|1 Gao
|p 1019 -
|2 Crossref
|t Nat. Chem.
|v 9
|y 2017
999 C 5 |a 10.1021/acscatal.8b05060
|9 -- missing cx lookup --
|1 Ma
|p 2639 -
|2 Crossref
|t ACS Catal.
|v 9
|y 2019
999 C 5 |a 10.1021/acs.nanolett.7b01139
|9 -- missing cx lookup --
|1 Xie
|p 3798 -
|2 Crossref
|t Nano Lett.
|v 17
|y 2017
999 C 5 |a 10.1021/acs.iecr.8b00016
|9 -- missing cx lookup --
|1 Wang
|p 4535 -
|2 Crossref
|t Ind. Eng. Chem. Res.
|v 57
|y 2018
999 C 5 |a 10.1038/ncomms15174
|9 -- missing cx lookup --
|1 Wei
|p 15174 -
|2 Crossref
|t Nat. Commun.
|v 8
|y 2017
999 C 5 |a 10.1016/j.cej.2022.136891
|9 -- missing cx lookup --
|1 Brösigke
|p 136891 -
|2 Crossref
|t Chem. Eng. J.
|v 446
|y 2022
999 C 5 |a 10.1126/science.abd4441
|9 -- missing cx lookup --
|1 Yan
|p 1257 -
|2 Crossref
|t Science
|v 371
|y 2021
999 C 5 |a 10.1039/D0QM00538J
|9 -- missing cx lookup --
|1 Wang
|p 1126 -
|2 Crossref
|t Mater. Chem. Front.
|v 5
|y 2021
999 C 5 |a 10.1039/d1na00310k
|9 -- missing cx lookup --
|1 Gioria
|p 3454 -
|2 Crossref
|t Nanoscale Adv.
|v 3
|y 2021
999 C 5 |a 10.1016/0926-860X(95)00306-1
|9 -- missing cx lookup --
|1 Dry
|p 319 -
|2 Crossref
|t Appl. Catal., A
|v 138
|y 1996
999 C 5 |a 10.1021/acs.chemmater.9b02957
|9 -- missing cx lookup --
|1 Hardy
|p 8163 -
|2 Crossref
|t Chem. Mater.
|v 31
|y 2019
999 C 5 |a 10.1039/b805427d
|9 -- missing cx lookup --
|1 de Smit
|p 2758 -
|2 Crossref
|t Chem. Soc. Rev.
|v 37
|y 2008
999 C 5 |a 10.1021/ja304958u
|9 -- missing cx lookup --
|1 Torres Galvis
|p 16207 -
|2 Crossref
|t J. Am. Chem. Soc.
|v 134
|y 2012
999 C 5 |a 10.1021/acscatal.0c01526
|9 -- missing cx lookup --
|1 Zhu
|p 7424 -
|2 Crossref
|t ACS Catal.
|v 10
|y 2020
999 C 5 |a 10.1039/C4RA07781D
|9 -- missing cx lookup --
|1 Arunkumar
|p 44367 -
|2 Crossref
|t RSC Adv.
|v 4
|y 2014
999 C 5 |1 Lide
|y 2005
|2 Crossref
|u D. R.Lide , CRC Handbook of Chemistry and Physics, Internet Version 2005 , CRC Press , 2005
|t CRC Handbook of Chemistry and Physics, Internet Version 2005
999 C 5 |2 Crossref
|u https://www.chemeo.com
999 C 5 |a 10.1080/08957959.2015.1059835
|9 -- missing cx lookup --
|1 Prescher
|p 223 -
|2 Crossref
|t High Pressure Res.
|v 35
|y 2015
999 C 5 |a 10.1016/0921-4526(93)90108-i
|9 -- missing cx lookup --
|1 Rodríguez-Carvajal
|p 55 -
|2 Crossref
|t Phys. B
|v 192
|y 1993
999 C 5 |a 10.1107/S0021889894004218
|9 -- missing cx lookup --
|1 Finger
|p 892 -
|2 Crossref
|t J. Appl. Crystallogr.
|v 27
|y 1994
999 C 5 |a 10.1111/j.1151-2916.1995.tb08820.x
|9 -- missing cx lookup --
|1 Hong
|p 433 -
|2 Crossref
|t J. Am. Ceram. Soc.
|v 78
|y 1995
999 C 5 |a 10.1039/c8cp04350g
|9 -- missing cx lookup --
|1 Grünbacher
|p 22099 -
|2 Crossref
|t Phys. Chem. Chem. Phys.
|v 20
|y 2018
999 C 5 |a 10.1107/S0567739476001551
|9 -- missing cx lookup --
|1 Shannon
|p 751 -
|2 Crossref
|t Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
|v 32
|y 1976
999 C 5 |a 10.1039/D0JA00208A
|9 -- missing cx lookup --
|1 Schlesiger
|p 2298 -
|2 Crossref
|t J. Anal. At. Spectrom.
|v 35
|y 2020
999 C 5 |a 10.1039/C4JA00303A
|9 -- missing cx lookup --
|1 Schlesiger
|p 1080 -
|2 Crossref
|t J. Anal. At. Spectrom.
|v 30
|y 2015
999 C 5 |a 10.1107/S0909049505012719
|9 -- missing cx lookup --
|1 Ravel
|p 537 -
|2 Crossref
|t J. Synchrotron Radiat.
|v 12
|y 2005
999 C 5 |a 10.1088/0953-8984/21/48/486004
|9 -- missing cx lookup --
|1 Shah
|p 486004 -
|2 Crossref
|t J. Phys.: Condens. Matter
|v 21
|y 2009
999 C 5 |a 10.1016/j.catcom.2015.12.011
|9 -- missing cx lookup --
|1 Liu
|p 1 -
|2 Crossref
|t Catal. Commun.
|v 76
|y 2016
999 C 5 |a 10.1021/acsomega.1c05927
|9 -- missing cx lookup --
|1 Rashed
|p 8403 -
|2 Crossref
|t ACS Omega
|v 7
|y 2022
999 C 5 |a 10.1039/C5RA02319J
|9 -- missing cx lookup --
|1 Liu
|p 29002 -
|2 Crossref
|t RSC Adv.
|v 5
|y 2015
999 C 5 |a 10.1016/j.cattod.2015.09.005
|9 -- missing cx lookup --
|1 Todic
|p 28 -
|2 Crossref
|t Catal. Today
|v 261
|y 2016
999 C 5 |a 10.1002/cctc.202001314
|9 -- missing cx lookup --
|1 Zheng
|p 6272 -
|2 Crossref
|t ChemCatChem
|v 12
|y 2020
999 C 5 |a 10.1021/acscatal.2c00092
|9 -- missing cx lookup --
|1 Eggart
|p 3897 -
|2 Crossref
|t ACS Catal.
|v 12
|y 2022
999 C 5 |a 10.1107/S0567739476001551
|9 -- missing cx lookup --
|1 Shannon
|p 751 -
|2 Crossref
|t Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
|v 32
|y 1976
999 C 5 |a 10.1021/acs.jpclett.2c00549
|9 -- missing cx lookup --
|1 Liu
|p 3342 -
|2 Crossref
|t J. Phys. Chem. Lett.
|v 13
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21