000611251 001__ 611251
000611251 005__ 20250929152414.0
000611251 0247_ $$2doi$$a10.1016/j.nima.2024.169985
000611251 0247_ $$2ISSN$$a0167-5087
000611251 0247_ $$2ISSN$$a0168-9002
000611251 0247_ $$2ISSN$$a1872-9576
000611251 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-04871
000611251 0247_ $$2WOS$$aWOS:001346307900001
000611251 0247_ $$2openalex$$aopenalex:W4403615642
000611251 037__ $$aPUBDB-2024-04871
000611251 041__ $$aEnglish
000611251 082__ $$a530
000611251 1001_ $$0P:(DE-H253)PIP1000066$$aDiehl, Inge$$b0$$udesy
000611251 1112_ $$a16th Pisa Meeting on Advanced Detectors$$cLa Biodola, Isola d’Elba$$d2024-05-26 - 2024-06-01$$wItaly
000611251 245__ $$a4D-Tracking with Digital SiPM
000611251 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2024
000611251 300__ $$a4
000611251 3367_ $$2ORCID$$aCONFERENCE_PAPER
000611251 3367_ $$033$$2EndNote$$aConference Paper
000611251 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000611251 3367_ $$2BibTeX$$aINPROCEEDINGS
000611251 3367_ $$2DRIVER$$aconferenceObject
000611251 3367_ $$2DataCite$$aOutput Types/Conference Paper
000611251 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1730982712_2460254
000611251 520__ $$aSilicon Photomultipliers (SiPMs) are the state-of-the-art technology in single-photon detection with solid-state detectors. Single Photon Avalanche Diodes (SPADs), the key element of SiPMs, can now be manufactured in CMOS processes, facilitating the integration of a SPAD array into custom monolithic ASICs. This allows implementing features such as signal digitization, masking, full hit-map readout, noise suppression, and photon counting in a monolithic CMOS chip. The complexity of the off-chip readout chain is thereby reduced. These new features allow new applications for digital SiPMs, such as 4D-tracking of charged particles, where spatial resolutions of the order of 10µm and timestamping with time resolutions of a few tens of ps are required. A prototype of a digital SiPM was designed at DESY using the LFoundry 150nm CMOS technology. Various studies were carried out in the laboratory and at the DESY II test-beam facility to evaluate the sensor performance in Minimum Ionizing Particles (MIPs) detection. The direct detection of charged particles was investigated for bare prototypes and assemblies coupling dSiPMs and thin LYSO crystals. Spatial resolution ∼20µm and a full-system time resolution of ∼50ps are measured using bare dSiPMs in direct MIP detection. Efficiency >99.5%, low noise rate and time resolution <1ns can be reached with the thin radiator coupling.
000611251 536__ $$0G:(DE-HGF)POF4-622$$a622 - Detector Technologies and Systems (POF4-622)$$cPOF4-622$$fPOF IV$$x0
000611251 542__ $$2Crossref$$i2024-12-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000611251 542__ $$2Crossref$$i2024-12-01$$uhttps://www.elsevier.com/legal/tdmrep-license
000611251 542__ $$2Crossref$$i2024-10-22$$uhttp://creativecommons.org/licenses/by/4.0/
000611251 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000611251 693__ $$0EXP:(DE-H253)TestBeamline22-20150101$$1EXP:(DE-H253)DESYII-20150101$$6EXP:(DE-H253)TestBeamline22-20150101$$aDESY II$$fDESY: TestBeamline 22$$x0
000611251 693__ $$0EXP:(DE-H253)TestBeamline21-20150101$$1EXP:(DE-H253)DESYII-20150101$$6EXP:(DE-H253)TestBeamline21-20150101$$aDESY II$$fDESY: TestBeamline 21$$x1
000611251 7001_ $$0P:(DE-H253)PIP1019720$$aFeindt, Finn$$b1$$udesy
000611251 7001_ $$0P:(DE-H253)PIP1004563$$aGregor, Ingrid-Maria$$b2$$udesy
000611251 7001_ $$0P:(DE-H253)PIP1003149$$aHansen, Karsten$$b3$$udesy
000611251 7001_ $$0P:(DE-H253)PIP1098944$$aLachnit, Stephan$$b4$$udesy
000611251 7001_ $$0P:(DE-H253)PIP1099910$$aRastorguev, Daniil$$b5$$udesy
000611251 7001_ $$0P:(DE-H253)PIP1018940$$aSpannagel, Simon$$b6$$udesy
000611251 7001_ $$0P:(DE-H253)PIP1087423$$aVanat, Tomas$$b7$$udesy
000611251 7001_ $$0P:(DE-H253)PIP1099070$$aVignola, Gianpiero$$b8$$eCorresponding author$$udesy
000611251 77318 $$2Crossref$$3journal-article$$a10.1016/j.nima.2024.169985$$bElsevier BV$$d2024-12-01$$p169985$$tNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment$$v1069$$x0168-9002$$y2024
000611251 773__ $$0PERI:(DE-600)1466532-3$$a10.1016/j.nima.2024.169985$$gp. 169985 -$$p169985$$tNuclear instruments & methods in physics research / Section A$$v1069$$x0168-9002$$y2024
000611251 8564_ $$uhttps://bib-pubdb1.desy.de/record/611251/files/HTML-Approval_of_scientific_publication.html
000611251 8564_ $$uhttps://bib-pubdb1.desy.de/record/611251/files/Internal%20Reviewer%20text.pdf
000611251 8564_ $$uhttps://bib-pubdb1.desy.de/record/611251/files/PDF-Approval_of_scientific_publication.pdf
000611251 8564_ $$uhttps://bib-pubdb1.desy.de/record/611251/files/Requests.pdf
000611251 8564_ $$uhttps://bib-pubdb1.desy.de/record/611251/files/1-s2.0-S0168900224009112-main.pdf$$yOpenAccess
000611251 8564_ $$uhttps://bib-pubdb1.desy.de/record/611251/files/Internal%20Reviewer%20text.pdf?subformat=pdfa$$xpdfa
000611251 8564_ $$uhttps://bib-pubdb1.desy.de/record/611251/files/Requests.pdf?subformat=pdfa$$xpdfa
000611251 8564_ $$uhttps://bib-pubdb1.desy.de/record/611251/files/1-s2.0-S0168900224009112-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000611251 8767_ $$92024-10-23$$d2024-10-23$$eHybrid-OA$$jDEAL$$lElsevier$$v0.00$$zEinzelnachweis Otkober Elsevier hybrid oa
000611251 8767_ $$92025$$d2024-10-23$$ePayment fee$$jDEAL$$lElsevier$$v0.35$$zMPDL Gebühr
000611251 8767_ $$92024-10-23$$d2024-10-23$$eHybrid-OA$$jStorniert$$lElsevier$$zDFG OAPK (Projekt)
000611251 8767_ $$92024-10-23$$d2024-10-23$$eHybrid-OA$$jZahlung erfolgt$$lElsevier$$zDFG OAPK (Projekt)
000611251 909CO $$ooai:bib-pubdb1.desy.de:611251$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000066$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019720$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1004563$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003149$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098944$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1099910$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018940$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1087423$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000611251 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087423$$aExternal Institute$$b7$$kExtern
000611251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1099070$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000611251 9131_ $$0G:(DE-HGF)POF4-622$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector Technologies and Systems$$x0
000611251 9141_ $$y2024
000611251 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000611251 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
000611251 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000611251 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
000611251 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
000611251 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL INSTRUM METH A : 2022$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
000611251 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
000611251 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000611251 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000611251 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000611251 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
000611251 9201_ $$0I:(DE-H253)ATLAS-20120731$$kATLAS$$lLHC/ATLAS Experiment$$x0
000611251 9201_ $$0I:(DE-H253)CMS-20120731$$kCMS$$lLHC/CMS Experiment$$x1
000611251 9201_ $$0I:(DE-H253)FEC-20120731$$kFEC$$lMikro- und Optoelektronik$$x2
000611251 9201_ $$0I:(DE-H253)FEA-20120731$$kFEA$$lDigital-Elektronik Entwicklung$$x3
000611251 980__ $$acontrib
000611251 980__ $$aVDB
000611251 980__ $$aUNRESTRICTED
000611251 980__ $$ajournal
000611251 980__ $$aI:(DE-H253)ATLAS-20120731
000611251 980__ $$aI:(DE-H253)CMS-20120731
000611251 980__ $$aI:(DE-H253)FEC-20120731
000611251 980__ $$aI:(DE-H253)FEA-20120731
000611251 980__ $$aAPC
000611251 9801_ $$aAPC
000611251 9801_ $$aFullTexts
000611251 999C5 $$1Gundacker$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6560/ab7b2d$$p17TR01 -$$tPhys. Med. Biol.$$v65$$y2020
000611251 999C5 $$1Bronzi$$2Crossref$$9-- missing cx lookup --$$a10.1109/JSEN.2015.2483565$$p3 -$$tIEEE Sens. J.$$v16$$y2016
000611251 999C5 $$1Qi$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.492581$$p30118 -$$tOpt. Express$$v31$$y2023
000611251 999C5 $$1Fischer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2022.167033$$tNucl. Instrum. Methods Phys. Res. A$$v1040$$y2022
000611251 999C5 $$1Gramuglia$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2022.167813$$tNucl. Instrum. Methods Phys. Res. A$$v1047$$y2023
000611251 999C5 $$1Carnesecchi$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjp/s13360-023-03923-4$$p337 -$$tEur. Phys. J. Plus$$v138$$y2023
000611251 999C5 $$1Diehl$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/19/01/P01020$$pP01020 -$$tJ. Instrum.$$v19$$y2024
000611251 999C5 $$1Vanat$$2Crossref$$oVanat 2020$$y2020
000611251 999C5 $$1Diener$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2018.11.133$$p265 -$$tNucl. Instrum. Methods Phys. Res. A$$v922$$y2019
000611251 999C5 $$1Hendrik$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjti/s40485-016-0033-2$$p7 -$$tEPJ Tech. Instrum.$$v3$$y2016
000611251 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/18/06/P06025$$pP06025 -$$tJ. Instrum.$$v18$$y2023
000611251 999C5 $$1Baesso$$2Crossref$$oBaesso 2019$$y2019
000611251 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/14/10/P10033$$pP10033 -$$tJ. Instrum.$$v14$$y2019
000611251 999C5 $$1Feindt$$2Crossref$$oFeindt 2024$$y2024
000611251 999C5 $$1Dannheim$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/16/03/P03008$$pP03008 -$$tJ. Instrum.$$v16$$y2021
000611251 999C5 $$1Lachnit$$2Crossref$$oLachnit 2024$$y2024