001 | 607697 | ||
005 | 20250724214330.0 | ||
024 | 7 | _ | |a 10.1016/j.jmst.2024.04.006 |2 doi |
024 | 7 | _ | |a 1005-0302 |2 ISSN |
024 | 7 | _ | |a 1941-1162 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-02000 |2 datacite_doi |
024 | 7 | _ | |a WOS:001362099400001 |2 WOS |
024 | 7 | _ | |a openalex:W4394987496 |2 openalex |
037 | _ | _ | |a PUBDB-2024-02000 |
041 | _ | _ | |a English |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Yue, Xiaoqi |0 P:(DE-H253)PIP1099995 |b 0 |
245 | _ | _ | |a Unveiling nano-scale chemical inhomogeneity in surface oxide films formed on V- and N-containing martensite stainless steel by synchrotron X-ray photoelectron emission spectroscopy/microscopy and microscopic X-ray absorption spectroscopy |
260 | _ | _ | |a Shenyang |c 2024 |b Ed. Board, Journal of Materials Science & Technology |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1753348925_3203447 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Nano-scale chemical inhomogeneity in surface oxide films formed on a V- and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron- based hard X-ray Photoelectron emission spectroscopy (HAXPES) and microscopy (HAXPEEM) as well as microscopic X-ray absorption spectroscopy (μ-XAS) techniques. The results reveal the inhomogene- ity in the oxide films on the micron-sized Cr$_2$ N- and VN-type particles, while the inhomogeneity on the martensite matrix phase exists due to localised formation of nano-sized tempering nitride particles at 600 °C. The oxide film formed on Cr$_2$ N-type particles is rich in Cr$_2$O$_2$ compared with that on the martensite matrix and VN-type particles. With the increase of tempering temperature, Cr$_2$O$_2$ formation is faster for the oxidation of Cr in the martensite matrix than the oxidation of Cr nitride-rich particles. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417) |0 G:(EU-Grant)101007417 |c 101007417 |f H2020-INFRAIA-2020-1 |x 2 |
542 | _ | _ | |i 2025-01-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2025-01-01 |2 Crossref |u https://www.elsevier.com/legal/tdmrep-license |
542 | _ | _ | |i 2024-04-19 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P22 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P22-20150101 |6 EXP:(DE-H253)P-P22-20150101 |x 0 |
693 | _ | _ | |a Nanolab |e DESY NanoLab: Microscopy |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-04-20150101 |5 EXP:(DE-H253)Nanolab-04-20150101 |x 1 |
700 | 1 | _ | |a Chen, Dihao |0 P:(DE-H253)PIP1104826 |b 1 |
700 | 1 | _ | |a Krishnan, Anantha |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Lazar, Isac |0 P:(DE-H253)PIP1100344 |b 3 |
700 | 1 | _ | |a Niu, Yuran |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Golias, Evangelos |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Wiemann, Carsten |0 P:(DE-H253)PIP1012885 |b 6 |
700 | 1 | _ | |a Gloskovskii, Andrei |0 P:(DE-H253)PIP1007694 |b 7 |u desy |
700 | 1 | _ | |a Schlueter, Christoph |0 P:(DE-H253)PIP1011024 |b 8 |u desy |
700 | 1 | _ | |a Jeromin, Arno |0 P:(DE-H253)PIP1084046 |b 9 |u desy |
700 | 1 | _ | |a Keller, Thomas F. |0 P:(DE-H253)PIP1019138 |b 10 |u desy |
700 | 1 | _ | |a Tong, Haijie |0 P:(DE-H253)PIP1104907 |b 11 |
700 | 1 | _ | |a Ejnermark, Sebastian |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Pan, Jinshan |0 P:(DE-H253)PIP1028882 |b 13 |e Corresponding author |
773 | 1 | 8 | |a 10.1016/j.jmst.2024.04.006 |b Elsevier BV |d 2025-01-01 |p 191-203 |3 journal-article |2 Crossref |t Journal of Materials Science & Technology |v 205 |y 2025 |x 1005-0302 |
773 | _ | _ | |a 10.1016/j.jmst.2024.04.006 |g Vol. 205, p. 191 - 203 |0 PERI:(DE-600)2431914-4 |p 191-203 |t Journal of materials science & technology |v 205 |y 2025 |x 1005-0302 |
856 | 4 | _ | |u https://www.sciencedirect.com/science/article/pii/S1005030224004535 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607697/files/Xiaoqi-Pan_j-mst_2024_1-s2.0-S1005030224004535-main.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607697/files/Xiaoqi-Pan_j-mst_2024_1-s2.0-S1005030224004535-main.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:607697 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1099995 |
910 | 1 | _ | |a KTH |0 I:(DE-HGF)0 |b 0 |6 P:(DE-H253)PIP1099995 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1104826 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1100344 |
910 | 1 | _ | |a Lund |0 I:(DE-HGF)0 |b 3 |6 P:(DE-H253)PIP1100344 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Juelich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-H253)PIP1012885 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1007694 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1011024 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1084046 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1019138 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1104907 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 13 |6 P:(DE-H253)PIP1028882 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-10-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-06 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER SCI TECHNOL : 2022 |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-06 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J MATER SCI TECHNOL : 2022 |d 2024-12-06 |
920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PET-S-20190712 |k FS-PET-S |l Experimentebetreuung PETRA III |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PET-S-20190712 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1016/j.corsci.2023.111551 |9 -- missing cx lookup -- |1 Gao |p 111551 - |2 Crossref |t Corros. Sci. |v 225 |y 2023 |
999 | C | 5 | |a 10.1016/j.matchar.2021.111066 |1 Zhao |9 -- missing cx lookup -- |2 Crossref |t Mater. Charact. |v 175 |y 2021 |
999 | C | 5 | |2 Crossref |u A.R. Gholi, G. Lindwall, M. Jönsson, Effects of tempering on corrosion properties of high nitrogen alloyed tooling steels in pyrolysis oil, Swerea KIMAB AB, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, 2011. urn:nbn:se:kth:diva-40471. |
999 | C | 5 | |a 10.1016/0010-938X(94)90013-2 |9 -- missing cx lookup -- |1 Marcus |p 2155 - |2 Crossref |t Corros. Sci. |v 36 |y 1994 |
999 | C | 5 | |1 Gao |y 2023 |2 Crossref |o Gao 2023 |
999 | C | 5 | |a 10.1016/j.actamat.2017.07.042 |9 -- missing cx lookup -- |1 He |p 61 - |2 Crossref |t Acta Mater. |v 138 |y 2017 |
999 | C | 5 | |a 10.1149/1.2108450 |9 -- missing cx lookup -- |1 Brooks |p 2459 - |2 Crossref |t J. Electrochem. Soc. |v 133 |y 1986 |
999 | C | 5 | |a 10.1016/j.corsci.2017.06.024 |9 -- missing cx lookup -- |1 Zhao |p 142 - |2 Crossref |t Corros. Sci. |v 126 |y 2017 |
999 | C | 5 | |1 Amaya |y 1998 |2 Crossref |o Amaya 1998 |
999 | C | 5 | |a 10.1002/sia.740190175 |9 -- missing cx lookup -- |1 Vito |p 403 - |2 Crossref |t Surf. Interface Anal. |v 19 |y 1992 |
999 | C | 5 | |a 10.1016/j.corsci.2021.109935 |1 Yue |9 -- missing cx lookup -- |2 Crossref |t Corros. Sci. |v 194 |y 2022 |
999 | C | 5 | |1 Yue |y 2020 |2 Crossref |o Yue 2020 |
999 | C | 5 | |1 Huang |y 2023 |2 Crossref |o Huang 2023 |
999 | C | 5 | |a 10.1016/0010-938X(90)90106-F |9 -- missing cx lookup -- |1 Willenbruch |p 179 - |2 Crossref |t Corros. Sci. |v 31 |y 1990 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1520/G0048-11R20E01 |2 Crossref |u Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, (n.d.). https://doi.org/10.1520/G0048-11R20E01. |
999 | C | 5 | |a 10.1016/0169-4332(92)90163-R |9 -- missing cx lookup -- |1 Marcus |p 7 - |2 Crossref |t Appl. Surf. Sci. |v 59 |y 1992 |
999 | C | 5 | |a 10.1016/j.corsci.2020.108792 |1 Dai |9 -- missing cx lookup -- |2 Crossref |t Corros. Sci. |v 174 |y 2020 |
999 | C | 5 | |a 10.1038/s41529-023-00398-7 |9 -- missing cx lookup -- |1 Yue |p 79 - |2 Crossref |t Npj Mater. Degrad. |v 7 |y 2023 |
999 | C | 5 | |a 10.1016/j.corsci.2018.09.002 |9 -- missing cx lookup -- |1 Feng |p 288 - |2 Crossref |t Corros. Sci. |v 144 |y 2018 |
999 | C | 5 | |a 10.3390/ma10080861 |9 -- missing cx lookup -- |1 Jiang |p 861 - |2 Crossref |t Materials (Basel) |v 10 |y 2017 |
999 | C | 5 | |a 10.1016/S0010-938X(02)00050-1 |9 -- missing cx lookup -- |1 Ras |p 2479 - |2 Crossref |t Corros. Sci. |v 44 |y 2002 |
999 | C | 5 | |a 10.1016/j.corsci.2023.111018 |1 Yue |9 -- missing cx lookup -- |2 Crossref |t Corros. Sci. |v 214 |y 2023 |
999 | C | 5 | |a 10.1016/j.apsusc.2023.157364 |1 Örnek |9 -- missing cx lookup -- |2 Crossref |t Appl. Surf. Sci. |v 628 |y 2023 |
999 | C | 5 | |a 10.1149/2.1381704jes |9 -- missing cx lookup -- |1 Frankel |p C180 - |2 Crossref |t J. Electrochem. Soc. |v 164 |y 2017 |
999 | C | 5 | |a 10.1016/j.jallcom.2021.162657 |1 Larsson |9 -- missing cx lookup -- |2 Crossref |t J. Alloy. Compd. |v 895 |y 2022 |
999 | C | 5 | |a 10.1016/S0013-4686(02)00841-1 |9 -- missing cx lookup -- |1 Olsson |p 1093 - |2 Crossref |t Electrochim. Acta |v 48 |y 2003 |
999 | C | 5 | |1 Larsson |y 2022 |2 Crossref |o Larsson 2022 |
999 | C | 5 | |1 Barroux |y 2021 |2 Crossref |o Barroux 2021 |
999 | C | 5 | |a 10.1016/j.corsci.2020.108951 |1 Wei |9 -- missing cx lookup -- |2 Crossref |t Corros. Sci. |v 177 |y 2020 |
999 | C | 5 | |a 10.1007/s40735-016-0047-y |9 -- missing cx lookup -- |1 Marimuthu |p 17 - |2 Crossref |t J. Bio- Tribo-Corrosion |v 2 |y 2016 |
999 | C | 5 | |a 10.1016/j.jmst.2019.06.004 |9 -- missing cx lookup -- |1 Jiao |p 2357 - |2 Crossref |t J. Mater. Sci. Technol. |v 35 |y 2019 |
999 | C | 5 | |a 10.1016/S1005-0302(12)60173-X |9 -- missing cx lookup -- |1 Fan |p 1059 - |2 Crossref |t J. Mater. Sci. Technol. |v 28 |y 2012 |
999 | C | 5 | |a 10.1016/j.corsci.2018.10.020 |9 -- missing cx lookup -- |1 Yao |p 221 - |2 Crossref |t Corros. Sci. |v 146 |y 2019 |
999 | C | 5 | |a 10.1149/2.0421911jes |9 -- missing cx lookup -- |1 Långberg |p C3336 - |2 Crossref |t J. Electrochem. Soc. |v 166 |y 2019 |
999 | C | 5 | |a 10.17815/jlsrf-2-140 |9 -- missing cx lookup -- |1 Stierle |p A76 - |2 Crossref |t J. Large-Scale Res. Facilities |v 2 |y 2016 |
999 | C | 5 | |1 Schlueter |9 -- missing cx lookup -- |2 Crossref |a 10.1063/1.5084611 |y 2019 |
999 | C | 5 | |a 10.1107/S160057752300019X |9 -- missing cx lookup -- |1 Niu |p 468 - |2 Crossref |t J. Synchrotron Radiat. |v 30 |y 2023 |
999 | C | 5 | |a 10.1038/nmeth.2019 |9 -- missing cx lookup -- |1 Schindelin |p 676 - |2 Crossref |t Nat. Methods |v 9 |y 2012 |
999 | C | 5 | |a 10.1109/83.650848 |9 -- missing cx lookup -- |1 Thevenaz |p 27 - |2 Crossref |t IEEE Trans. Image Proc. |v 7 |y 1998 |
999 | C | 5 | |a 10.1016/j.corsci.2018.10.020 |9 -- missing cx lookup -- |1 Yao |p 221 - |2 Crossref |t Corros. Sci. |v 146 |y 2019 |
999 | C | 5 | |a 10.1016/j.jmst.2022.01.043 |9 -- missing cx lookup -- |1 Yue |p 192 - |2 Crossref |t J. Mater. Sci. Technol. |v 127 |y 2022 |
999 | C | 5 | |a 10.1002/jrs.5198 |9 -- missing cx lookup -- |1 Gomes |p 1256 - |2 Crossref |t J. Raman Spectr. |v 48 |y 2017 |
999 | C | 5 | |a 10.1002/sia.7024 |9 -- missing cx lookup -- |1 Zhu |p 99 - |2 Crossref |t Surf. Interface Anal. |v 54 |y 2022 |
999 | C | 5 | |1 Giménez-Marqués |y 2018 |2 Crossref |o Giménez-Marqués 2018 |
999 | C | 5 | |a 10.1103/PhysRevB.83.045203 |1 Yitamben |9 -- missing cx lookup -- |2 Crossref |t Phys. Rev. B |v 83 |y 2011 |
999 | C | 5 | |a 10.1038/s41598-023-42733-7 |9 -- missing cx lookup -- |1 Kalal |p 15994 - |2 Crossref |t Sci. Rep. |v 13 |y 2023 |
999 | C | 5 | |a 10.1021/jp9627032 |9 -- missing cx lookup -- |1 Kapoor |p 1543 - |2 Crossref |t J. Phys. Chem. B |v 101 |y 1997 |
999 | C | 5 | |a 10.1039/C9EE03787J |9 -- missing cx lookup -- |1 Robert |p 949 - |2 Crossref |t Energy Environ. Sci. |v 13 |y 2020 |
999 | C | 5 | |a 10.1039/c3cp50709b |9 -- missing cx lookup -- |1 Maganas |p 7260 - |2 Crossref |t Phys. Chem. Chem. Phys. |v 15 |y 2013 |
999 | C | 5 | |a 10.1107/S1600577521006822 |9 -- missing cx lookup -- |1 Pandey |p 1504 - |2 Crossref |t J. Synchrotr. Radiation |v 28 |y 2021 |
999 | C | 5 | |a 10.1016/j.solmat.2020.110951 |1 Rojas |9 -- missing cx lookup -- |2 Crossref |t Solar Energy Mater. Solar Cells |v 223 |y 2021 |
999 | C | 5 | |a 10.1016/j.msea.2003.08.075 |9 -- missing cx lookup -- |1 Guan |p 73 - |2 Crossref |t Mater. Sci. Eng. A |v 370 |y 2004 |
999 | C | 5 | |a 10.1016/j.actamat.2020.116612 |1 Young |9 -- missing cx lookup -- |2 Crossref |t Acta Mater. |v 206 |y 2021 |
999 | C | 5 | |a 10.1016/j.matdes.2008.07.023 |9 -- missing cx lookup -- |1 Lee |p 1691 - |2 Crossref |t Mater Des. |v 30 |y 2009 |
999 | C | 5 | |a 10.1016/j.jnucmat.2010.02.016 |9 -- missing cx lookup -- |1 Shen |p 94 - |2 Crossref |t J. Nucl. Mater. |v 400 |y 2010 |
999 | C | 5 | |a 10.2355/isijinternational.36.768 |9 -- missing cx lookup -- |1 Goecmen |p 768 - |2 Crossref |t ISIJ Int. |v 36 |y 1996 |
999 | C | 5 | |a 10.1016/S0010-938X(99)00013-X |9 -- missing cx lookup -- |1 Jargelius-Pettersson |p 1639 - |2 Crossref |t Corros. Sci. |v 41 |y 1999 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|