000607697 001__ 607697 000607697 005__ 20250724214330.0 000607697 0247_ $$2doi$$a10.1016/j.jmst.2024.04.006 000607697 0247_ $$2ISSN$$a1005-0302 000607697 0247_ $$2ISSN$$a1941-1162 000607697 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-02000 000607697 0247_ $$2WOS$$aWOS:001362099400001 000607697 0247_ $$2openalex$$aopenalex:W4394987496 000607697 037__ $$aPUBDB-2024-02000 000607697 041__ $$aEnglish 000607697 082__ $$a670 000607697 1001_ $$0P:(DE-H253)PIP1099995$$aYue, Xiaoqi$$b0 000607697 245__ $$aUnveiling nano-scale chemical inhomogeneity in surface oxide films formed on V- and N-containing martensite stainless steel by synchrotron X-ray photoelectron emission spectroscopy/microscopy and microscopic X-ray absorption spectroscopy 000607697 260__ $$aShenyang$$bEd. Board, Journal of Materials Science & Technology$$c2024 000607697 3367_ $$2DRIVER$$aarticle 000607697 3367_ $$2DataCite$$aOutput Types/Journal article 000607697 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753348925_3203447 000607697 3367_ $$2BibTeX$$aARTICLE 000607697 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000607697 3367_ $$00$$2EndNote$$aJournal Article 000607697 520__ $$aNano-scale chemical inhomogeneity in surface oxide films formed on a V- and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron- based hard X-ray Photoelectron emission spectroscopy (HAXPES) and microscopy (HAXPEEM) as well as microscopic X-ray absorption spectroscopy (μ-XAS) techniques. The results reveal the inhomogene- ity in the oxide films on the micron-sized Cr$_2$ N- and VN-type particles, while the inhomogeneity on the martensite matrix phase exists due to localised formation of nano-sized tempering nitride particles at 600 °C. The oxide film formed on Cr$_2$ N-type particles is rich in Cr$_2$O$_2$ compared with that on the martensite matrix and VN-type particles. With the increase of tempering temperature, Cr$_2$O$_2$ formation is faster for the oxidation of Cr in the martensite matrix than the oxidation of Cr nitride-rich particles. 000607697 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 000607697 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1 000607697 536__ $$0G:(EU-Grant)101007417$$aNEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)$$c101007417$$fH2020-INFRAIA-2020-1$$x2 000607697 542__ $$2Crossref$$i2025-01-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/ 000607697 542__ $$2Crossref$$i2025-01-01$$uhttps://www.elsevier.com/legal/tdmrep-license 000607697 542__ $$2Crossref$$i2024-04-19$$uhttp://creativecommons.org/licenses/by/4.0/ 000607697 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000607697 693__ $$0EXP:(DE-H253)P-P22-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P22-20150101$$aPETRA III$$fPETRA Beamline P22$$x0 000607697 693__ $$0EXP:(DE-H253)Nanolab-04-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-04-20150101$$aNanolab$$eDESY NanoLab: Microscopy$$x1 000607697 7001_ $$0P:(DE-H253)PIP1104826$$aChen, Dihao$$b1 000607697 7001_ $$0P:(DE-HGF)0$$aKrishnan, Anantha$$b2 000607697 7001_ $$0P:(DE-H253)PIP1100344$$aLazar, Isac$$b3 000607697 7001_ $$0P:(DE-HGF)0$$aNiu, Yuran$$b4 000607697 7001_ $$0P:(DE-HGF)0$$aGolias, Evangelos$$b5 000607697 7001_ $$0P:(DE-H253)PIP1012885$$aWiemann, Carsten$$b6 000607697 7001_ $$0P:(DE-H253)PIP1007694$$aGloskovskii, Andrei$$b7$$udesy 000607697 7001_ $$0P:(DE-H253)PIP1011024$$aSchlueter, Christoph$$b8$$udesy 000607697 7001_ $$0P:(DE-H253)PIP1084046$$aJeromin, Arno$$b9$$udesy 000607697 7001_ $$0P:(DE-H253)PIP1019138$$aKeller, Thomas F.$$b10$$udesy 000607697 7001_ $$0P:(DE-H253)PIP1104907$$aTong, Haijie$$b11 000607697 7001_ $$0P:(DE-HGF)0$$aEjnermark, Sebastian$$b12 000607697 7001_ $$0P:(DE-H253)PIP1028882$$aPan, Jinshan$$b13$$eCorresponding author 000607697 77318 $$2Crossref$$3journal-article$$a10.1016/j.jmst.2024.04.006$$bElsevier BV$$d2025-01-01$$p191-203$$tJournal of Materials Science & Technology$$v205$$x1005-0302$$y2025 000607697 773__ $$0PERI:(DE-600)2431914-4$$a10.1016/j.jmst.2024.04.006$$gVol. 205, p. 191 - 203$$p191-203$$tJournal of materials science & technology$$v205$$x1005-0302$$y2025 000607697 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S1005030224004535 000607697 8564_ $$uhttps://bib-pubdb1.desy.de/record/607697/files/Xiaoqi-Pan_j-mst_2024_1-s2.0-S1005030224004535-main.pdf$$yOpenAccess 000607697 8564_ $$uhttps://bib-pubdb1.desy.de/record/607697/files/Xiaoqi-Pan_j-mst_2024_1-s2.0-S1005030224004535-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000607697 909CO $$ooai:bib-pubdb1.desy.de:607697$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pec_fundedresources$$pVDB 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099995$$aExternal Institute$$b0$$kExtern 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099995$$a KTH$$b0 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104826$$aExternal Institute$$b1$$kExtern 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100344$$aExternal Institute$$b3$$kExtern 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100344$$a Lund $$b3 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern 000607697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-H253)PIP1012885$$aForschungszentrum Juelich$$b6$$kFZJ 000607697 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007694$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY 000607697 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011024$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY 000607697 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1084046$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY 000607697 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019138$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104907$$aExternal Institute$$b11$$kExtern 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b12$$kExtern 000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1028882$$aExternal Institute$$b13$$kExtern 000607697 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0 000607697 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1 000607697 9141_ $$y2024 000607697 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25 000607697 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-25 000607697 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000607697 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25 000607697 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000607697 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-06$$wger 000607697 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER SCI TECHNOL : 2022$$d2024-12-06 000607697 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06 000607697 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06 000607697 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06 000607697 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06 000607697 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06 000607697 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER SCI TECHNOL : 2022$$d2024-12-06 000607697 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x0 000607697 9201_ $$0I:(DE-H253)FS-PET-S-20190712$$kFS-PET-S$$lExperimentebetreuung PETRA III$$x1 000607697 980__ $$ajournal 000607697 980__ $$aVDB 000607697 980__ $$aI:(DE-H253)FS-NL-20120731 000607697 980__ $$aI:(DE-H253)FS-PET-S-20190712 000607697 980__ $$aUNRESTRICTED 000607697 9801_ $$aFullTexts 000607697 999C5 $$1Gao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2023.111551$$p111551 -$$tCorros. Sci.$$v225$$y2023 000607697 999C5 $$1Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matchar.2021.111066$$tMater. Charact.$$v175$$y2021 000607697 999C5 $$2Crossref$$uA.R. Gholi, G. Lindwall, M. Jönsson, Effects of tempering on corrosion properties of high nitrogen alloyed tooling steels in pyrolysis oil, Swerea KIMAB AB, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, 2011. urn:nbn:se:kth:diva-40471. 000607697 999C5 $$1Marcus$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-938X(94)90013-2$$p2155 -$$tCorros. Sci.$$v36$$y1994 000607697 999C5 $$1Gao$$2Crossref$$oGao 2023$$y2023 000607697 999C5 $$1He$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2017.07.042$$p61 -$$tActa Mater.$$v138$$y2017 000607697 999C5 $$1Brooks$$2Crossref$$9-- missing cx lookup --$$a10.1149/1.2108450$$p2459 -$$tJ. Electrochem. Soc.$$v133$$y1986 000607697 999C5 $$1Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2017.06.024$$p142 -$$tCorros. Sci.$$v126$$y2017 000607697 999C5 $$1Amaya$$2Crossref$$oAmaya 1998$$y1998 000607697 999C5 $$1Vito$$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.740190175$$p403 -$$tSurf. Interface Anal.$$v19$$y1992 000607697 999C5 $$1Yue$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2021.109935$$tCorros. Sci.$$v194$$y2022 000607697 999C5 $$1Yue$$2Crossref$$oYue 2020$$y2020 000607697 999C5 $$1Huang$$2Crossref$$oHuang 2023$$y2023 000607697 999C5 $$1Willenbruch$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-938X(90)90106-F$$p179 -$$tCorros. Sci.$$v31$$y1990 000607697 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1520/G0048-11R20E01$$uStandard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, (n.d.). https://doi.org/10.1520/G0048-11R20E01. 000607697 999C5 $$1Marcus$$2Crossref$$9-- missing cx lookup --$$a10.1016/0169-4332(92)90163-R$$p7 -$$tAppl. Surf. Sci.$$v59$$y1992 000607697 999C5 $$1Dai$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2020.108792$$tCorros. Sci.$$v174$$y2020 000607697 999C5 $$1Yue$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41529-023-00398-7$$p79 -$$tNpj Mater. Degrad.$$v7$$y2023 000607697 999C5 $$1Feng$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2018.09.002$$p288 -$$tCorros. Sci.$$v144$$y2018 000607697 999C5 $$1Jiang$$2Crossref$$9-- missing cx lookup --$$a10.3390/ma10080861$$p861 -$$tMaterials (Basel)$$v10$$y2017 000607697 999C5 $$1Ras$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-938X(02)00050-1$$p2479 -$$tCorros. Sci.$$v44$$y2002 000607697 999C5 $$1Yue$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2023.111018$$tCorros. Sci.$$v214$$y2023 000607697 999C5 $$1Örnek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apsusc.2023.157364$$tAppl. Surf. Sci.$$v628$$y2023 000607697 999C5 $$1Frankel$$2Crossref$$9-- missing cx lookup --$$a10.1149/2.1381704jes$$pC180 -$$tJ. Electrochem. Soc.$$v164$$y2017 000607697 999C5 $$1Larsson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2021.162657$$tJ. Alloy. Compd.$$v895$$y2022 000607697 999C5 $$1Olsson$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0013-4686(02)00841-1$$p1093 -$$tElectrochim. Acta$$v48$$y2003 000607697 999C5 $$1Larsson$$2Crossref$$oLarsson 2022$$y2022 000607697 999C5 $$1Barroux$$2Crossref$$oBarroux 2021$$y2021 000607697 999C5 $$1Wei$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2020.108951$$tCorros. Sci.$$v177$$y2020 000607697 999C5 $$1Marimuthu$$2Crossref$$9-- missing cx lookup --$$a10.1007/s40735-016-0047-y$$p17 -$$tJ. Bio- Tribo-Corrosion$$v2$$y2016 000607697 999C5 $$1Jiao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmst.2019.06.004$$p2357 -$$tJ. Mater. Sci. Technol.$$v35$$y2019 000607697 999C5 $$1Fan$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1005-0302(12)60173-X$$p1059 -$$tJ. Mater. Sci. Technol.$$v28$$y2012 000607697 999C5 $$1Yao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2018.10.020$$p221 -$$tCorros. Sci.$$v146$$y2019 000607697 999C5 $$1Långberg$$2Crossref$$9-- missing cx lookup --$$a10.1149/2.0421911jes$$pC3336 -$$tJ. Electrochem. Soc.$$v166$$y2019 000607697 999C5 $$1Stierle$$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-2-140$$pA76 -$$tJ. Large-Scale Res. Facilities$$v2$$y2016 000607697 999C5 $$1Schlueter$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5084611$$y2019 000607697 999C5 $$1Niu$$2Crossref$$9-- missing cx lookup --$$a10.1107/S160057752300019X$$p468 -$$tJ. Synchrotron Radiat.$$v30$$y2023 000607697 999C5 $$1Schindelin$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.2019$$p676 -$$tNat. Methods$$v9$$y2012 000607697 999C5 $$1Thevenaz$$2Crossref$$9-- missing cx lookup --$$a10.1109/83.650848$$p27 -$$tIEEE Trans. Image Proc.$$v7$$y1998 000607697 999C5 $$1Yao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2018.10.020$$p221 -$$tCorros. Sci.$$v146$$y2019 000607697 999C5 $$1Yue$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmst.2022.01.043$$p192 -$$tJ. Mater. Sci. Technol.$$v127$$y2022 000607697 999C5 $$1Gomes$$2Crossref$$9-- missing cx lookup --$$a10.1002/jrs.5198$$p1256 -$$tJ. Raman Spectr.$$v48$$y2017 000607697 999C5 $$1Zhu$$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.7024$$p99 -$$tSurf. Interface Anal.$$v54$$y2022 000607697 999C5 $$1Giménez-Marqués$$2Crossref$$oGiménez-Marqués 2018$$y2018 000607697 999C5 $$1Yitamben$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.045203$$tPhys. Rev. B$$v83$$y2011 000607697 999C5 $$1Kalal$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-023-42733-7$$p15994 -$$tSci. Rep.$$v13$$y2023 000607697 999C5 $$1Kapoor$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp9627032$$p1543 -$$tJ. Phys. Chem. B$$v101$$y1997 000607697 999C5 $$1Robert$$2Crossref$$9-- missing cx lookup --$$a10.1039/C9EE03787J$$p949 -$$tEnergy Environ. Sci.$$v13$$y2020 000607697 999C5 $$1Maganas$$2Crossref$$9-- missing cx lookup --$$a10.1039/c3cp50709b$$p7260 -$$tPhys. Chem. Chem. Phys.$$v15$$y2013 000607697 999C5 $$1Pandey$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577521006822$$p1504 -$$tJ. Synchrotr. Radiation$$v28$$y2021 000607697 999C5 $$1Rojas$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.solmat.2020.110951$$tSolar Energy Mater. Solar Cells$$v223$$y2021 000607697 999C5 $$1Guan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2003.08.075$$p73 -$$tMater. Sci. Eng. A$$v370$$y2004 000607697 999C5 $$1Young$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2020.116612$$tActa Mater.$$v206$$y2021 000607697 999C5 $$1Lee$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matdes.2008.07.023$$p1691 -$$tMater Des.$$v30$$y2009 000607697 999C5 $$1Shen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnucmat.2010.02.016$$p94 -$$tJ. Nucl. Mater.$$v400$$y2010 000607697 999C5 $$1Goecmen$$2Crossref$$9-- missing cx lookup --$$a10.2355/isijinternational.36.768$$p768 -$$tISIJ Int.$$v36$$y1996 000607697 999C5 $$1Jargelius-Pettersson$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-938X(99)00013-X$$p1639 -$$tCorros. Sci.$$v41$$y1999