000607697 001__ 607697
000607697 005__ 20250724214330.0
000607697 0247_ $$2doi$$a10.1016/j.jmst.2024.04.006
000607697 0247_ $$2ISSN$$a1005-0302
000607697 0247_ $$2ISSN$$a1941-1162
000607697 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-02000
000607697 0247_ $$2WOS$$aWOS:001362099400001
000607697 0247_ $$2openalex$$aopenalex:W4394987496
000607697 037__ $$aPUBDB-2024-02000
000607697 041__ $$aEnglish
000607697 082__ $$a670
000607697 1001_ $$0P:(DE-H253)PIP1099995$$aYue, Xiaoqi$$b0
000607697 245__ $$aUnveiling nano-scale chemical inhomogeneity in surface oxide films formed on V- and N-containing martensite stainless steel by synchrotron X-ray photoelectron emission spectroscopy/microscopy and microscopic X-ray absorption spectroscopy
000607697 260__ $$aShenyang$$bEd. Board, Journal of Materials Science & Technology$$c2024
000607697 3367_ $$2DRIVER$$aarticle
000607697 3367_ $$2DataCite$$aOutput Types/Journal article
000607697 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753348925_3203447
000607697 3367_ $$2BibTeX$$aARTICLE
000607697 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000607697 3367_ $$00$$2EndNote$$aJournal Article
000607697 520__ $$aNano-scale chemical inhomogeneity in surface oxide films formed on a V- and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron- based hard X-ray Photoelectron emission spectroscopy (HAXPES) and microscopy (HAXPEEM) as well as microscopic X-ray absorption spectroscopy (μ-XAS) techniques. The results reveal the inhomogene- ity in the oxide films on the micron-sized Cr$_2$ N- and VN-type particles, while the inhomogeneity on the martensite matrix phase exists due to localised formation of nano-sized tempering nitride particles at 600 °C. The oxide film formed on Cr$_2$ N-type particles is rich in Cr$_2$O$_2$ compared with that on the martensite matrix and VN-type particles. With the increase of tempering temperature, Cr$_2$O$_2$ formation is faster for the oxidation of Cr in the martensite matrix than the oxidation of Cr nitride-rich particles.
000607697 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000607697 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000607697 536__ $$0G:(EU-Grant)101007417$$aNEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)$$c101007417$$fH2020-INFRAIA-2020-1$$x2
000607697 542__ $$2Crossref$$i2025-01-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000607697 542__ $$2Crossref$$i2025-01-01$$uhttps://www.elsevier.com/legal/tdmrep-license
000607697 542__ $$2Crossref$$i2024-04-19$$uhttp://creativecommons.org/licenses/by/4.0/
000607697 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000607697 693__ $$0EXP:(DE-H253)P-P22-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P22-20150101$$aPETRA III$$fPETRA Beamline P22$$x0
000607697 693__ $$0EXP:(DE-H253)Nanolab-04-20150101$$1EXP:(DE-H253)DESY-NanoLab-20150101$$5EXP:(DE-H253)Nanolab-04-20150101$$aNanolab$$eDESY NanoLab: Microscopy$$x1
000607697 7001_ $$0P:(DE-H253)PIP1104826$$aChen, Dihao$$b1
000607697 7001_ $$0P:(DE-HGF)0$$aKrishnan, Anantha$$b2
000607697 7001_ $$0P:(DE-H253)PIP1100344$$aLazar, Isac$$b3
000607697 7001_ $$0P:(DE-HGF)0$$aNiu, Yuran$$b4
000607697 7001_ $$0P:(DE-HGF)0$$aGolias, Evangelos$$b5
000607697 7001_ $$0P:(DE-H253)PIP1012885$$aWiemann, Carsten$$b6
000607697 7001_ $$0P:(DE-H253)PIP1007694$$aGloskovskii, Andrei$$b7$$udesy
000607697 7001_ $$0P:(DE-H253)PIP1011024$$aSchlueter, Christoph$$b8$$udesy
000607697 7001_ $$0P:(DE-H253)PIP1084046$$aJeromin, Arno$$b9$$udesy
000607697 7001_ $$0P:(DE-H253)PIP1019138$$aKeller, Thomas F.$$b10$$udesy
000607697 7001_ $$0P:(DE-H253)PIP1104907$$aTong, Haijie$$b11
000607697 7001_ $$0P:(DE-HGF)0$$aEjnermark, Sebastian$$b12
000607697 7001_ $$0P:(DE-H253)PIP1028882$$aPan, Jinshan$$b13$$eCorresponding author
000607697 77318 $$2Crossref$$3journal-article$$a10.1016/j.jmst.2024.04.006$$bElsevier BV$$d2025-01-01$$p191-203$$tJournal of Materials Science & Technology$$v205$$x1005-0302$$y2025
000607697 773__ $$0PERI:(DE-600)2431914-4$$a10.1016/j.jmst.2024.04.006$$gVol. 205, p. 191 - 203$$p191-203$$tJournal of materials science & technology$$v205$$x1005-0302$$y2025
000607697 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S1005030224004535
000607697 8564_ $$uhttps://bib-pubdb1.desy.de/record/607697/files/Xiaoqi-Pan_j-mst_2024_1-s2.0-S1005030224004535-main.pdf$$yOpenAccess
000607697 8564_ $$uhttps://bib-pubdb1.desy.de/record/607697/files/Xiaoqi-Pan_j-mst_2024_1-s2.0-S1005030224004535-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000607697 909CO $$ooai:bib-pubdb1.desy.de:607697$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pec_fundedresources$$pVDB
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099995$$aExternal Institute$$b0$$kExtern
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099995$$a KTH$$b0
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104826$$aExternal Institute$$b1$$kExtern
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100344$$aExternal Institute$$b3$$kExtern
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100344$$a Lund $$b3
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000607697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-H253)PIP1012885$$aForschungszentrum Juelich$$b6$$kFZJ
000607697 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007694$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000607697 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011024$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000607697 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1084046$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000607697 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019138$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104907$$aExternal Institute$$b11$$kExtern
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b12$$kExtern
000607697 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1028882$$aExternal Institute$$b13$$kExtern
000607697 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000607697 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000607697 9141_ $$y2024
000607697 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000607697 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-25
000607697 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000607697 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000607697 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000607697 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-06$$wger
000607697 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER SCI TECHNOL : 2022$$d2024-12-06
000607697 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
000607697 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
000607697 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
000607697 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
000607697 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
000607697 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER SCI TECHNOL : 2022$$d2024-12-06
000607697 9201_ $$0I:(DE-H253)FS-NL-20120731$$kFS-NL$$lNanolab$$x0
000607697 9201_ $$0I:(DE-H253)FS-PET-S-20190712$$kFS-PET-S$$lExperimentebetreuung PETRA III$$x1
000607697 980__ $$ajournal
000607697 980__ $$aVDB
000607697 980__ $$aI:(DE-H253)FS-NL-20120731
000607697 980__ $$aI:(DE-H253)FS-PET-S-20190712
000607697 980__ $$aUNRESTRICTED
000607697 9801_ $$aFullTexts
000607697 999C5 $$1Gao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2023.111551$$p111551 -$$tCorros. Sci.$$v225$$y2023
000607697 999C5 $$1Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matchar.2021.111066$$tMater. Charact.$$v175$$y2021
000607697 999C5 $$2Crossref$$uA.R. Gholi, G. Lindwall, M. Jönsson, Effects of tempering on corrosion properties of high nitrogen alloyed tooling steels in pyrolysis oil, Swerea KIMAB AB, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, 2011. urn:nbn:se:kth:diva-40471.
000607697 999C5 $$1Marcus$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-938X(94)90013-2$$p2155 -$$tCorros. Sci.$$v36$$y1994
000607697 999C5 $$1Gao$$2Crossref$$oGao 2023$$y2023
000607697 999C5 $$1He$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2017.07.042$$p61 -$$tActa Mater.$$v138$$y2017
000607697 999C5 $$1Brooks$$2Crossref$$9-- missing cx lookup --$$a10.1149/1.2108450$$p2459 -$$tJ. Electrochem. Soc.$$v133$$y1986
000607697 999C5 $$1Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2017.06.024$$p142 -$$tCorros. Sci.$$v126$$y2017
000607697 999C5 $$1Amaya$$2Crossref$$oAmaya 1998$$y1998
000607697 999C5 $$1Vito$$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.740190175$$p403 -$$tSurf. Interface Anal.$$v19$$y1992
000607697 999C5 $$1Yue$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2021.109935$$tCorros. Sci.$$v194$$y2022
000607697 999C5 $$1Yue$$2Crossref$$oYue 2020$$y2020
000607697 999C5 $$1Huang$$2Crossref$$oHuang 2023$$y2023
000607697 999C5 $$1Willenbruch$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-938X(90)90106-F$$p179 -$$tCorros. Sci.$$v31$$y1990
000607697 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1520/G0048-11R20E01$$uStandard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, (n.d.). https://doi.org/10.1520/G0048-11R20E01.
000607697 999C5 $$1Marcus$$2Crossref$$9-- missing cx lookup --$$a10.1016/0169-4332(92)90163-R$$p7 -$$tAppl. Surf. Sci.$$v59$$y1992
000607697 999C5 $$1Dai$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2020.108792$$tCorros. Sci.$$v174$$y2020
000607697 999C5 $$1Yue$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41529-023-00398-7$$p79 -$$tNpj Mater. Degrad.$$v7$$y2023
000607697 999C5 $$1Feng$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2018.09.002$$p288 -$$tCorros. Sci.$$v144$$y2018
000607697 999C5 $$1Jiang$$2Crossref$$9-- missing cx lookup --$$a10.3390/ma10080861$$p861 -$$tMaterials (Basel)$$v10$$y2017
000607697 999C5 $$1Ras$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-938X(02)00050-1$$p2479 -$$tCorros. Sci.$$v44$$y2002
000607697 999C5 $$1Yue$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2023.111018$$tCorros. Sci.$$v214$$y2023
000607697 999C5 $$1Örnek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apsusc.2023.157364$$tAppl. Surf. Sci.$$v628$$y2023
000607697 999C5 $$1Frankel$$2Crossref$$9-- missing cx lookup --$$a10.1149/2.1381704jes$$pC180 -$$tJ. Electrochem. Soc.$$v164$$y2017
000607697 999C5 $$1Larsson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jallcom.2021.162657$$tJ. Alloy. Compd.$$v895$$y2022
000607697 999C5 $$1Olsson$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0013-4686(02)00841-1$$p1093 -$$tElectrochim. Acta$$v48$$y2003
000607697 999C5 $$1Larsson$$2Crossref$$oLarsson 2022$$y2022
000607697 999C5 $$1Barroux$$2Crossref$$oBarroux 2021$$y2021
000607697 999C5 $$1Wei$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2020.108951$$tCorros. Sci.$$v177$$y2020
000607697 999C5 $$1Marimuthu$$2Crossref$$9-- missing cx lookup --$$a10.1007/s40735-016-0047-y$$p17 -$$tJ. Bio- Tribo-Corrosion$$v2$$y2016
000607697 999C5 $$1Jiao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmst.2019.06.004$$p2357 -$$tJ. Mater. Sci. Technol.$$v35$$y2019
000607697 999C5 $$1Fan$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1005-0302(12)60173-X$$p1059 -$$tJ. Mater. Sci. Technol.$$v28$$y2012
000607697 999C5 $$1Yao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2018.10.020$$p221 -$$tCorros. Sci.$$v146$$y2019
000607697 999C5 $$1Långberg$$2Crossref$$9-- missing cx lookup --$$a10.1149/2.0421911jes$$pC3336 -$$tJ. Electrochem. Soc.$$v166$$y2019
000607697 999C5 $$1Stierle$$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-2-140$$pA76 -$$tJ. Large-Scale Res. Facilities$$v2$$y2016
000607697 999C5 $$1Schlueter$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5084611$$y2019
000607697 999C5 $$1Niu$$2Crossref$$9-- missing cx lookup --$$a10.1107/S160057752300019X$$p468 -$$tJ. Synchrotron Radiat.$$v30$$y2023
000607697 999C5 $$1Schindelin$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.2019$$p676 -$$tNat. Methods$$v9$$y2012
000607697 999C5 $$1Thevenaz$$2Crossref$$9-- missing cx lookup --$$a10.1109/83.650848$$p27 -$$tIEEE Trans. Image Proc.$$v7$$y1998
000607697 999C5 $$1Yao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.corsci.2018.10.020$$p221 -$$tCorros. Sci.$$v146$$y2019
000607697 999C5 $$1Yue$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmst.2022.01.043$$p192 -$$tJ. Mater. Sci. Technol.$$v127$$y2022
000607697 999C5 $$1Gomes$$2Crossref$$9-- missing cx lookup --$$a10.1002/jrs.5198$$p1256 -$$tJ. Raman Spectr.$$v48$$y2017
000607697 999C5 $$1Zhu$$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.7024$$p99 -$$tSurf. Interface Anal.$$v54$$y2022
000607697 999C5 $$1Giménez-Marqués$$2Crossref$$oGiménez-Marqués 2018$$y2018
000607697 999C5 $$1Yitamben$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.045203$$tPhys. Rev. B$$v83$$y2011
000607697 999C5 $$1Kalal$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-023-42733-7$$p15994 -$$tSci. Rep.$$v13$$y2023
000607697 999C5 $$1Kapoor$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp9627032$$p1543 -$$tJ. Phys. Chem. B$$v101$$y1997
000607697 999C5 $$1Robert$$2Crossref$$9-- missing cx lookup --$$a10.1039/C9EE03787J$$p949 -$$tEnergy Environ. Sci.$$v13$$y2020
000607697 999C5 $$1Maganas$$2Crossref$$9-- missing cx lookup --$$a10.1039/c3cp50709b$$p7260 -$$tPhys. Chem. Chem. Phys.$$v15$$y2013
000607697 999C5 $$1Pandey$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577521006822$$p1504 -$$tJ. Synchrotr. Radiation$$v28$$y2021
000607697 999C5 $$1Rojas$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.solmat.2020.110951$$tSolar Energy Mater. Solar Cells$$v223$$y2021
000607697 999C5 $$1Guan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msea.2003.08.075$$p73 -$$tMater. Sci. Eng. A$$v370$$y2004
000607697 999C5 $$1Young$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2020.116612$$tActa Mater.$$v206$$y2021
000607697 999C5 $$1Lee$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matdes.2008.07.023$$p1691 -$$tMater Des.$$v30$$y2009
000607697 999C5 $$1Shen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnucmat.2010.02.016$$p94 -$$tJ. Nucl. Mater.$$v400$$y2010
000607697 999C5 $$1Goecmen$$2Crossref$$9-- missing cx lookup --$$a10.2355/isijinternational.36.768$$p768 -$$tISIJ Int.$$v36$$y1996
000607697 999C5 $$1Jargelius-Pettersson$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-938X(99)00013-X$$p1639 -$$tCorros. Sci.$$v41$$y1999