Home > Publications database > First in vitro measurement of VHEE relative biological effectiveness (RBE) in lung and prostate cancer cells using the ARES linac at DESY > print |
001 | 607160 | ||
005 | 20250715170840.0 | ||
024 | 7 | _ | |a 10.1038/s41598-024-60585-7 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01803 |2 datacite_doi |
024 | 7 | _ | |a altmetric:163369103 |2 altmetric |
024 | 7 | _ | |a pmid:38740830 |2 pmid |
024 | 7 | _ | |a WOS:001222105400049 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4396849275 |
037 | _ | _ | |a PUBDB-2024-01803 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Wanstall, Hannah |0 P:(DE-H253)PIP1104462 |b 0 |e Corresponding author |
245 | _ | _ | |a First in vitro measurement of VHEE relative biological effectiveness (RBE) in lung and prostate cancer cells using the ARES linac at DESY |
260 | _ | _ | |a [London] |c 2024 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1719921977_510582 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. Thisincludes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivityof VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used toperform successful in vitro radiobiological studies. The ARES (accelerator research experiment atSINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate(PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability anduniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using theclonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first timeusing this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEEirradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival wasfitted to the linear quadratic (LQ) model (R2 = 0.96–0.97). The damage from VHEE and X-ray irradiatedcells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biologicaleffectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photonradiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. TheRBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival.Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5)and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeVelectrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would bea viable radiotherapy modality. Several studies have shown that VHEE has characteristics that wouldoffer significant improvements over conventional photon radiotherapy for example, electrons arerelatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies haveshown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicatingthat VHEE can offer improved and safer treatment plans with reduced side effects. The biologicalresponse of cancer cells to VHEE has not been sufficiently studied as of yet, however this initialstudy provides some initial insights into cell damage. VHEE offers significant benefits over photonradiotherapy and therefore more studies are required to fully understand the biological effectivenessof VHEE. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
542 | _ | _ | |i 2024-05-13 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-05-13 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a SINBAD |e Accelerator Research Experiment at SINBAD |1 EXP:(DE-H253)SINBAD-20200101 |0 EXP:(DE-H253)ARES-20200101 |5 EXP:(DE-H253)ARES-20200101 |x 0 |
700 | 1 | _ | |a Burkart, Florian |0 P:(DE-H253)PIP1080380 |b 1 |u desy |
700 | 1 | _ | |a Dinter, Hannes |0 P:(DE-H253)PIP1021528 |b 2 |u desy |
700 | 1 | _ | |a Kellermeier, Max |0 P:(DE-H253)PIP1086263 |b 3 |u desy |
700 | 1 | _ | |a Kuropka, Willi |0 P:(DE-H253)PIP1030512 |b 4 |u desy |
700 | 1 | _ | |a Mayet, Frank |0 P:(DE-H253)PIP1014786 |b 5 |u desy |
700 | 1 | _ | |a Vinatier, Thomas |0 P:(DE-H253)PIP1019775 |b 6 |u desy |
700 | 1 | _ | |a Santina, Elham |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Chadwick, Amy L. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Merchant, Michael J. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Henthorn, Nicholas T. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Köpke, Michael |0 P:(DE-H253)PIP1101402 |b 11 |u desy |
700 | 1 | _ | |a Stacey, Blae |0 P:(DE-H253)PIP1097590 |b 12 |u desy |
700 | 1 | _ | |a Jaster-Merz, Sonja Meike |0 P:(DE-H253)PIP1020401 |b 13 |u desy |
700 | 1 | _ | |a Jones, Roger M. |0 P:(DE-HGF)0 |b 14 |
773 | 1 | 8 | |a 10.1038/s41598-024-60585-7 |b Springer Science and Business Media LLC |d 2024-05-13 |n 1 |p 10957 |3 journal-article |2 Crossref |t Scientific Reports |v 14 |y 2024 |x 2045-2322 |
773 | _ | _ | |a 10.1038/s41598-024-60585-7 |g Vol. 14, no. 1, p. 10957 |0 PERI:(DE-600)2615211-3 |n 1 |p 10957 |t Scientific reports |v 14 |y 2024 |x 2045-2322 |
856 | 4 | _ | |u https://www.nature.com/articles/s41598-024-60585-7 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607160/files/s41598-024-60585-7-1.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607160/files/s41598-024-60585-7-1.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:607160 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1104462 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1080380 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1021528 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1086263 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1030512 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1030512 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1014786 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1014786 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1019775 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1101402 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1097590 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1020401 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-H253)MPY1-20170908 |k MPY1 |l Beschleunigerphysik Fachgruppe MPY1 |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-TI-20120731 |k FS-TI |l FS-Arbeitsgruppe |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)MPY1-20170908 |
980 | _ | _ | |a I:(DE-H253)FS-TI-20120731 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1088/0031-9155/45/7/306 |9 -- missing cx lookup -- |1 C DesRosiers |p 1781 - |2 Crossref |u DesRosiers, C., Moskvin, V., Bielajew, A. F. & Papiez, L. 150–250 meV electron beams in radiation therapy. Phys. Med. Biol. 45(7), 1781–1805 (2000). |t Phys. Med. Biol. |v 45 |y 2000 |
999 | C | 5 | |2 Crossref |u CHUV, CERN and THERYQ collaborate on FLASH radiotherapy device. Appl. Rad. Oncol. (2022). |
999 | C | 5 | |2 Crossref |u Wuensch, W. The CHUV-CERN collaboration on a high-energy electron FLASH therapy facility. In UK Accelerator Institutes Seminar Series (2021). https://www.appliedradiationoncology.com/articles/chuv-cern-and-theryq-collaborate-on-flash-radiotherapy-device. Accessed June 2023. |
999 | C | 5 | |2 Crossref |u Lagzda, A. VHEE radiotherapy studies at CLARA and CERN facilities. https://www.research.manchester.ac.uk/portal/files/156333514/FULL_TEXT.PDF. University of Manchester (2019). Accessed June 2023. |
999 | C | 5 | |a 10.1016/j.nimb.2020.09.008 |9 -- missing cx lookup -- |1 A Lagzda |p 70 - |2 Crossref |u Lagzda, A. et al. Influence of heterogeneous media on very high energy electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 482, 70–81 (2020). |t Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms |v 482 |y 2020 |
999 | C | 5 | |a 10.1118/1.4918923 |9 -- missing cx lookup -- |1 M Bazalova-Carter |p 2615 - |2 Crossref |u Bazalova-Carter, M. et al. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans. Med. Phys. 42(5), 2615–2625 (2015). |t Med. Phys. |v 42 |y 2015 |
999 | C | 5 | |a 10.1120/jacmp.v4i4.2503 |9 -- missing cx lookup -- |1 RJ Kudchadker |p 321 - |2 Crossref |u Kudchadker, R. J., Antolak, J. A., Morrison, W. H., Wong, P. F. & Hogstrom, K. R. Utilization of custom electron bolus in head and neck radiotherapy. J. Appl. Clin. Med. Phys. 4(4), 321–333 (2003). |t J. Appl. Clin. Med. Phys. |v 4 |y 2003 |
999 | C | 5 | |a 10.1148/62.6.845 |9 -- missing cx lookup -- |1 LL Haas |p 845 - |2 Crossref |u Haas, L. L., Laughlin, J. B. & Harvey, R. A. Biological effectiveness of highspeed electron beam in man. Radiology 62(6), 845–851 (1954). |t Radiology |v 62 |y 1954 |
999 | C | 5 | |1 GE Laramore |y 2013 |2 Crossref |u Laramore, G. E., Rockhill, J. K. & Komarnicky Kocher, L. T. Relative biological effectiveness (RBE). In Encyclopedia of Radiation Oncology (ed. Brady, L. W.) (Springer, 2013). |t Encyclopedia of Radiation Oncology |
999 | C | 5 | |a 10.1038/s41598-021-82772-6 |1 KL Small |9 -- missing cx lookup -- |2 Crossref |u Small, K. L. et al. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci. Rep. https://doi.org/10.1038/s41598-021-82772-6 (2021). |t Sci. Rep. |y 2021 |
999 | C | 5 | |a 10.1093/jrr/rrad032 |9 -- missing cx lookup -- |1 HC Wanstall |p 547 - |2 Crossref |u Wanstall, H. C. et al. Quantification of damage to plasmid DNA from 35 MeV electrons, 228 MeV protons and 300 kVp X-rays in varying hydroxyl radical scavenging environments. J. Radiat. Res. 64(3), 547–557 (2023). |t J. Radiat. Res. |v 64 |y 2023 |
999 | C | 5 | |a 10.1038/s41598-021-90805-3 |9 -- missing cx lookup -- |1 R Delorme |p 11242 - |2 Crossref |u Delorme, R., Masilela, T. A. M., Etoh, C., Smekens, F. & Prezado, Y. First theoretical determination of relative biological effectiveness of very high energy electrons. Sci. Rep. 11(1), 11242 (2021). |t Sci. Rep. |v 11 |y 2021 |
999 | C | 5 | |a 10.3390/cancers13194942 |9 -- missing cx lookup -- |1 MG Ronga |p 4942 - |2 Crossref |u Ronga, M. G. et al. Back to the future: Very high-energy electrons (vhees) and their potential application in radiation therapy. Cancers 13(19), 4942 (2021). |t Cancers |v 13 |y 2021 |
999 | C | 5 | |2 Crossref |u Burkart, F. et al. The ARES Linac at DESY. In 31st Int Linear Accel Conf. (JACoW Publishing, 2022). |
999 | C | 5 | |2 Crossref |u Ashland. EBT3 Specification and User Guide (2023). http://www.gafchromic.com/documents/EBT3_Specifications.pdf. Accessed June 2023. |
999 | C | 5 | |a 10.1088/0031-9155/59/19/5811 |9 -- missing cx lookup -- |1 A Subiel |p 5811 - |2 Crossref |u Subiel, A. et al. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: Using radiochromic film measurements and Monte Carlo simulations. Phys. Med. Biol. 59(19), 5811–5829 (2014). |t Phys. Med. Biol. |v 59 |y 2014 |
999 | C | 5 | |2 Crossref |u Rieker, V. F. et al. Developments of reliable VHEE/FLASH passive dosimetry methods and procedures at CLEAR. In 14th Int Particle Accel Conf; Venezia (JACoW Publishing, 2023). |
999 | C | 5 | |a 10.1038/s41598-020-65819-y |9 -- missing cx lookup -- |1 M McManus |p 9089 - |2 Crossref |u McManus, M. et al. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate very high energy electron beams. Sci. Rep. 10(1), 9089 (2020). |t Sci. Rep. |v 10 |y 2020 |
999 | C | 5 | |a 10.1002/mp.15782 |9 -- missing cx lookup -- |1 RG Verona |p 5513 - |2 Crossref |u Verona, R. G. et al. Application of a novel diamond detector for commissioning of FLASH radiotherapy electron beams. Med. Phys. 49(8), 5513–5522 (2022). |t Med. Phys. |v 49 |y 2022 |
999 | C | 5 | |a 10.1186/s13014-016-0750-3 |9 -- missing cx lookup -- |1 C Herskind |p 24 - |2 Crossref |u Herskind, C. et al. Biology of high single doses of IORT: RBE, 5 R’s, and other biological aspects. Radiat. Oncol. 12(1), 24 (2017). |t Radiat. Oncol. |v 12 |y 2017 |
999 | C | 5 | |a 10.1007/s12194-021-00627-1 |9 -- missing cx lookup -- |1 A Chattaraj |p 297 - |2 Crossref |u Chattaraj, A. & Selvam, T. P. Microdosimetry-based relative biological effectiveness calculations for radiotherapeutic electron beams: A FLUKA-based study. Radiol. Phys. Technol. 14(3), 297–308 (2021). |t Radiol. Phys. Technol. |v 14 |y 2021 |
999 | C | 5 | |a 10.1007/s00411-008-0209-5 |9 -- missing cx lookup -- |1 S Acharya |p 197 - |2 Crossref |u Acharya, S., Sanjeev, G., Bhat, N. N., Siddappa, K. & Narayana, Y. The effect of electron and gamma irradiation on the induction of micronuclei in cytokinesis-blocked human blood lymphocytes. Radiat. Environ. Biophys. 48(2), 197–203 (2009). |t Radiat. Environ. Biophys. |v 48 |y 2009 |
999 | C | 5 | |a 10.1667/RR14266.1 |9 -- missing cx lookup -- |1 MG Andreassi |p 245 - |2 Crossref |u Andreassi, M. G. et al. Radiobiological effectiveness of ultrashort laser-driven electron bunches: Micronucleus frequency, telomere shortening and cell viability. Radiat. Res. 186(3), 245–253 (2016). |t Radiat. Res. |v 186 |y 2016 |
999 | C | 5 | |1 RK Nairy |y 2017 |2 Crossref |u Nairy, R. K., Bhat, N. N., Sanjeev, G. & Yerol, N. Dose-response study using micronucleus cytome assay: A tool for biodosimetry application. Radiat. Prot. Dosim. 174(1), 79–87 (2017). |
999 | C | 5 | |a 10.1093/mutage/geac001 |9 -- missing cx lookup -- |1 CJ Heaven |p 3 - |2 Crossref |u Heaven, C. J. et al. The suitability of micronuclei as markers of relative biological effect. Mutagenesis 37(1), 3–12 (2022). |t Mutagenesis |v 37 |y 2022 |
999 | C | 5 | |2 Crossref |u National Institute of Standards and Technology. ESTAR: Stopping Power and Range Tables for Electrons. https://physics.nist.gov/cgi-bin/Star/e_table.pl (2024). Accessed June 2023. |
999 | C | 5 | |a 10.1088/2057-1976/abc967 |9 -- missing cx lookup -- |1 ON Vassiliev |p 015001 - |2 Crossref |u Vassiliev, O. N. On calculation of the average linear energy transfer for radiobiological modelling. Biomed. Phys. Eng. Express 7(1), 015001 (2021). |t Biomed. Phys. Eng. Express |v 7 |y 2021 |
999 | C | 5 | |1 International Atomic Energy Agency |y 2010 |2 Crossref |u International Atomic Energy Agency. Radiation Biology: A Handbook for Teachers and Students 20–21 (Springer, 2010). |t Radiation Biology: A Handbook for Teachers and Students |
999 | C | 5 | |a 10.1016/j.ejmp.2020.03.019 |9 -- missing cx lookup -- |1 B Faddegon |p 114 - |2 Crossref |u Faddegon, B. et al. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med. 72, 114–121 (2020). |t Phys. Med. |v 72 |y 2020 |
999 | C | 5 | |a 10.1118/1.4758060 |9 -- missing cx lookup -- |1 J Perl |p 6818 - |2 Crossref |u Perl, J., Shin, J., Schumann, J., Faddegon, B. & Paganetti, H. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications. Med. Phys. 39(11), 6818–6837 (2012). |t Med. Phys. |v 39 |y 2012 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|