001     607160
005     20250715170840.0
024 7 _ |a 10.1038/s41598-024-60585-7
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-01803
|2 datacite_doi
024 7 _ |a altmetric:163369103
|2 altmetric
024 7 _ |a pmid:38740830
|2 pmid
024 7 _ |a WOS:001222105400049
|2 WOS
024 7 _ |2 openalex
|a openalex:W4396849275
037 _ _ |a PUBDB-2024-01803
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Wanstall, Hannah
|0 P:(DE-H253)PIP1104462
|b 0
|e Corresponding author
245 _ _ |a First in vitro measurement of VHEE relative biological effectiveness (RBE) in lung and prostate cancer cells using the ARES linac at DESY
260 _ _ |a [London]
|c 2024
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719921977_510582
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. Thisincludes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivityof VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used toperform successful in vitro radiobiological studies. The ARES (accelerator research experiment atSINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate(PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability anduniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using theclonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first timeusing this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEEirradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival wasfitted to the linear quadratic (LQ) model (R2 = 0.96–0.97). The damage from VHEE and X-ray irradiatedcells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biologicaleffectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photonradiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. TheRBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival.Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5)and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeVelectrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would bea viable radiotherapy modality. Several studies have shown that VHEE has characteristics that wouldoffer significant improvements over conventional photon radiotherapy for example, electrons arerelatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies haveshown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicatingthat VHEE can offer improved and safer treatment plans with reduced side effects. The biologicalresponse of cancer cells to VHEE has not been sufficiently studied as of yet, however this initialstudy provides some initial insights into cell damage. VHEE offers significant benefits over photonradiotherapy and therefore more studies are required to fully understand the biological effectivenessof VHEE.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
542 _ _ |i 2024-05-13
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-05-13
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a SINBAD
|e Accelerator Research Experiment at SINBAD
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)ARES-20200101
|5 EXP:(DE-H253)ARES-20200101
|x 0
700 1 _ |a Burkart, Florian
|0 P:(DE-H253)PIP1080380
|b 1
|u desy
700 1 _ |a Dinter, Hannes
|0 P:(DE-H253)PIP1021528
|b 2
|u desy
700 1 _ |a Kellermeier, Max
|0 P:(DE-H253)PIP1086263
|b 3
|u desy
700 1 _ |a Kuropka, Willi
|0 P:(DE-H253)PIP1030512
|b 4
|u desy
700 1 _ |a Mayet, Frank
|0 P:(DE-H253)PIP1014786
|b 5
|u desy
700 1 _ |a Vinatier, Thomas
|0 P:(DE-H253)PIP1019775
|b 6
|u desy
700 1 _ |a Santina, Elham
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Chadwick, Amy L.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Merchant, Michael J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Henthorn, Nicholas T.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Köpke, Michael
|0 P:(DE-H253)PIP1101402
|b 11
|u desy
700 1 _ |a Stacey, Blae
|0 P:(DE-H253)PIP1097590
|b 12
|u desy
700 1 _ |a Jaster-Merz, Sonja Meike
|0 P:(DE-H253)PIP1020401
|b 13
|u desy
700 1 _ |a Jones, Roger M.
|0 P:(DE-HGF)0
|b 14
773 1 8 |a 10.1038/s41598-024-60585-7
|b Springer Science and Business Media LLC
|d 2024-05-13
|n 1
|p 10957
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 14
|y 2024
|x 2045-2322
773 _ _ |a 10.1038/s41598-024-60585-7
|g Vol. 14, no. 1, p. 10957
|0 PERI:(DE-600)2615211-3
|n 1
|p 10957
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |u https://www.nature.com/articles/s41598-024-60585-7
856 4 _ |u https://bib-pubdb1.desy.de/record/607160/files/s41598-024-60585-7-1.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/607160/files/s41598-024-60585-7-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:607160
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1104462
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1080380
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1021528
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1086263
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1030512
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1030512
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1014786
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1014786
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1019775
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1101402
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1097590
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1020401
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-H253)MPY1-20170908
|k MPY1
|l Beschleunigerphysik Fachgruppe MPY1
|x 0
920 1 _ |0 I:(DE-H253)FS-TI-20120731
|k FS-TI
|l FS-Arbeitsgruppe
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MPY1-20170908
980 _ _ |a I:(DE-H253)FS-TI-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1088/0031-9155/45/7/306
|9 -- missing cx lookup --
|1 C DesRosiers
|p 1781 -
|2 Crossref
|u DesRosiers, C., Moskvin, V., Bielajew, A. F. & Papiez, L. 150–250 meV electron beams in radiation therapy. Phys. Med. Biol. 45(7), 1781–1805 (2000).
|t Phys. Med. Biol.
|v 45
|y 2000
999 C 5 |2 Crossref
|u CHUV, CERN and THERYQ collaborate on FLASH radiotherapy device. Appl. Rad. Oncol. (2022).
999 C 5 |2 Crossref
|u Wuensch, W. The CHUV-CERN collaboration on a high-energy electron FLASH therapy facility. In UK Accelerator Institutes Seminar Series (2021). https://www.appliedradiationoncology.com/articles/chuv-cern-and-theryq-collaborate-on-flash-radiotherapy-device. Accessed June 2023.
999 C 5 |2 Crossref
|u Lagzda, A. VHEE radiotherapy studies at CLARA and CERN facilities. https://www.research.manchester.ac.uk/portal/files/156333514/FULL_TEXT.PDF. University of Manchester (2019). Accessed June 2023.
999 C 5 |a 10.1016/j.nimb.2020.09.008
|9 -- missing cx lookup --
|1 A Lagzda
|p 70 -
|2 Crossref
|u Lagzda, A. et al. Influence of heterogeneous media on very high energy electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 482, 70–81 (2020).
|t Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
|v 482
|y 2020
999 C 5 |a 10.1118/1.4918923
|9 -- missing cx lookup --
|1 M Bazalova-Carter
|p 2615 -
|2 Crossref
|u Bazalova-Carter, M. et al. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans. Med. Phys. 42(5), 2615–2625 (2015).
|t Med. Phys.
|v 42
|y 2015
999 C 5 |a 10.1120/jacmp.v4i4.2503
|9 -- missing cx lookup --
|1 RJ Kudchadker
|p 321 -
|2 Crossref
|u Kudchadker, R. J., Antolak, J. A., Morrison, W. H., Wong, P. F. & Hogstrom, K. R. Utilization of custom electron bolus in head and neck radiotherapy. J. Appl. Clin. Med. Phys. 4(4), 321–333 (2003).
|t J. Appl. Clin. Med. Phys.
|v 4
|y 2003
999 C 5 |a 10.1148/62.6.845
|9 -- missing cx lookup --
|1 LL Haas
|p 845 -
|2 Crossref
|u Haas, L. L., Laughlin, J. B. & Harvey, R. A. Biological effectiveness of highspeed electron beam in man. Radiology 62(6), 845–851 (1954).
|t Radiology
|v 62
|y 1954
999 C 5 |1 GE Laramore
|y 2013
|2 Crossref
|u Laramore, G. E., Rockhill, J. K. & Komarnicky Kocher, L. T. Relative biological effectiveness (RBE). In Encyclopedia of Radiation Oncology (ed. Brady, L. W.) (Springer, 2013).
|t Encyclopedia of Radiation Oncology
999 C 5 |a 10.1038/s41598-021-82772-6
|1 KL Small
|9 -- missing cx lookup --
|2 Crossref
|u Small, K. L. et al. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci. Rep. https://doi.org/10.1038/s41598-021-82772-6 (2021).
|t Sci. Rep.
|y 2021
999 C 5 |a 10.1093/jrr/rrad032
|9 -- missing cx lookup --
|1 HC Wanstall
|p 547 -
|2 Crossref
|u Wanstall, H. C. et al. Quantification of damage to plasmid DNA from 35 MeV electrons, 228 MeV protons and 300 kVp X-rays in varying hydroxyl radical scavenging environments. J. Radiat. Res. 64(3), 547–557 (2023).
|t J. Radiat. Res.
|v 64
|y 2023
999 C 5 |a 10.1038/s41598-021-90805-3
|9 -- missing cx lookup --
|1 R Delorme
|p 11242 -
|2 Crossref
|u Delorme, R., Masilela, T. A. M., Etoh, C., Smekens, F. & Prezado, Y. First theoretical determination of relative biological effectiveness of very high energy electrons. Sci. Rep. 11(1), 11242 (2021).
|t Sci. Rep.
|v 11
|y 2021
999 C 5 |a 10.3390/cancers13194942
|9 -- missing cx lookup --
|1 MG Ronga
|p 4942 -
|2 Crossref
|u Ronga, M. G. et al. Back to the future: Very high-energy electrons (vhees) and their potential application in radiation therapy. Cancers 13(19), 4942 (2021).
|t Cancers
|v 13
|y 2021
999 C 5 |2 Crossref
|u Burkart, F. et al. The ARES Linac at DESY. In 31st Int Linear Accel Conf. (JACoW Publishing, 2022).
999 C 5 |2 Crossref
|u Ashland. EBT3 Specification and User Guide (2023). http://www.gafchromic.com/documents/EBT3_Specifications.pdf. Accessed June 2023.
999 C 5 |a 10.1088/0031-9155/59/19/5811
|9 -- missing cx lookup --
|1 A Subiel
|p 5811 -
|2 Crossref
|u Subiel, A. et al. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: Using radiochromic film measurements and Monte Carlo simulations. Phys. Med. Biol. 59(19), 5811–5829 (2014).
|t Phys. Med. Biol.
|v 59
|y 2014
999 C 5 |2 Crossref
|u Rieker, V. F. et al. Developments of reliable VHEE/FLASH passive dosimetry methods and procedures at CLEAR. In 14th Int Particle Accel Conf; Venezia (JACoW Publishing, 2023).
999 C 5 |a 10.1038/s41598-020-65819-y
|9 -- missing cx lookup --
|1 M McManus
|p 9089 -
|2 Crossref
|u McManus, M. et al. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate very high energy electron beams. Sci. Rep. 10(1), 9089 (2020).
|t Sci. Rep.
|v 10
|y 2020
999 C 5 |a 10.1002/mp.15782
|9 -- missing cx lookup --
|1 RG Verona
|p 5513 -
|2 Crossref
|u Verona, R. G. et al. Application of a novel diamond detector for commissioning of FLASH radiotherapy electron beams. Med. Phys. 49(8), 5513–5522 (2022).
|t Med. Phys.
|v 49
|y 2022
999 C 5 |a 10.1186/s13014-016-0750-3
|9 -- missing cx lookup --
|1 C Herskind
|p 24 -
|2 Crossref
|u Herskind, C. et al. Biology of high single doses of IORT: RBE, 5 R’s, and other biological aspects. Radiat. Oncol. 12(1), 24 (2017).
|t Radiat. Oncol.
|v 12
|y 2017
999 C 5 |a 10.1007/s12194-021-00627-1
|9 -- missing cx lookup --
|1 A Chattaraj
|p 297 -
|2 Crossref
|u Chattaraj, A. & Selvam, T. P. Microdosimetry-based relative biological effectiveness calculations for radiotherapeutic electron beams: A FLUKA-based study. Radiol. Phys. Technol. 14(3), 297–308 (2021).
|t Radiol. Phys. Technol.
|v 14
|y 2021
999 C 5 |a 10.1007/s00411-008-0209-5
|9 -- missing cx lookup --
|1 S Acharya
|p 197 -
|2 Crossref
|u Acharya, S., Sanjeev, G., Bhat, N. N., Siddappa, K. & Narayana, Y. The effect of electron and gamma irradiation on the induction of micronuclei in cytokinesis-blocked human blood lymphocytes. Radiat. Environ. Biophys. 48(2), 197–203 (2009).
|t Radiat. Environ. Biophys.
|v 48
|y 2009
999 C 5 |a 10.1667/RR14266.1
|9 -- missing cx lookup --
|1 MG Andreassi
|p 245 -
|2 Crossref
|u Andreassi, M. G. et al. Radiobiological effectiveness of ultrashort laser-driven electron bunches: Micronucleus frequency, telomere shortening and cell viability. Radiat. Res. 186(3), 245–253 (2016).
|t Radiat. Res.
|v 186
|y 2016
999 C 5 |1 RK Nairy
|y 2017
|2 Crossref
|u Nairy, R. K., Bhat, N. N., Sanjeev, G. & Yerol, N. Dose-response study using micronucleus cytome assay: A tool for biodosimetry application. Radiat. Prot. Dosim. 174(1), 79–87 (2017).
999 C 5 |a 10.1093/mutage/geac001
|9 -- missing cx lookup --
|1 CJ Heaven
|p 3 -
|2 Crossref
|u Heaven, C. J. et al. The suitability of micronuclei as markers of relative biological effect. Mutagenesis 37(1), 3–12 (2022).
|t Mutagenesis
|v 37
|y 2022
999 C 5 |2 Crossref
|u National Institute of Standards and Technology. ESTAR: Stopping Power and Range Tables for Electrons. https://physics.nist.gov/cgi-bin/Star/e_table.pl (2024). Accessed June 2023.
999 C 5 |a 10.1088/2057-1976/abc967
|9 -- missing cx lookup --
|1 ON Vassiliev
|p 015001 -
|2 Crossref
|u Vassiliev, O. N. On calculation of the average linear energy transfer for radiobiological modelling. Biomed. Phys. Eng. Express 7(1), 015001 (2021).
|t Biomed. Phys. Eng. Express
|v 7
|y 2021
999 C 5 |1 International Atomic Energy Agency
|y 2010
|2 Crossref
|u International Atomic Energy Agency. Radiation Biology: A Handbook for Teachers and Students 20–21 (Springer, 2010).
|t Radiation Biology: A Handbook for Teachers and Students
999 C 5 |a 10.1016/j.ejmp.2020.03.019
|9 -- missing cx lookup --
|1 B Faddegon
|p 114 -
|2 Crossref
|u Faddegon, B. et al. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med. 72, 114–121 (2020).
|t Phys. Med.
|v 72
|y 2020
999 C 5 |a 10.1118/1.4758060
|9 -- missing cx lookup --
|1 J Perl
|p 6818 -
|2 Crossref
|u Perl, J., Shin, J., Schumann, J., Faddegon, B. & Paganetti, H. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications. Med. Phys. 39(11), 6818–6837 (2012).
|t Med. Phys.
|v 39
|y 2012


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21