000607160 001__ 607160
000607160 005__ 20250715170840.0
000607160 0247_ $$2doi$$a10.1038/s41598-024-60585-7
000607160 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01803
000607160 0247_ $$2altmetric$$aaltmetric:163369103
000607160 0247_ $$2pmid$$apmid:38740830
000607160 0247_ $$2WOS$$aWOS:001222105400049
000607160 0247_ $$2openalex$$aopenalex:W4396849275
000607160 037__ $$aPUBDB-2024-01803
000607160 041__ $$aEnglish
000607160 082__ $$a600
000607160 1001_ $$0P:(DE-H253)PIP1104462$$aWanstall, Hannah$$b0$$eCorresponding author
000607160 245__ $$aFirst in vitro measurement of VHEE relative biological effectiveness (RBE) in lung and prostate cancer cells using the ARES linac at DESY
000607160 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2024
000607160 3367_ $$2DRIVER$$aarticle
000607160 3367_ $$2DataCite$$aOutput Types/Journal article
000607160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719921977_510582
000607160 3367_ $$2BibTeX$$aARTICLE
000607160 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000607160 3367_ $$00$$2EndNote$$aJournal Article
000607160 520__ $$aVery high energy electrons (VHEE) are a potential candidate for radiotherapy applications. Thisincludes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivityof VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used toperform successful in vitro radiobiological studies. The ARES (accelerator research experiment atSINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate(PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability anduniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using theclonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first timeusing this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEEirradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival wasfitted to the linear quadratic (LQ) model (R2 = 0.96–0.97). The damage from VHEE and X-ray irradiatedcells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biologicaleffectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photonradiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. TheRBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival.Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5)and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeVelectrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would bea viable radiotherapy modality. Several studies have shown that VHEE has characteristics that wouldoffer significant improvements over conventional photon radiotherapy for example, electrons arerelatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies haveshown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicatingthat VHEE can offer improved and safer treatment plans with reduced side effects. The biologicalresponse of cancer cells to VHEE has not been sufficiently studied as of yet, however this initialstudy provides some initial insights into cell damage. VHEE offers significant benefits over photonradiotherapy and therefore more studies are required to fully understand the biological effectivenessof VHEE.
000607160 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000607160 542__ $$2Crossref$$i2024-05-13$$uhttps://creativecommons.org/licenses/by/4.0
000607160 542__ $$2Crossref$$i2024-05-13$$uhttps://creativecommons.org/licenses/by/4.0
000607160 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000607160 693__ $$0EXP:(DE-H253)ARES-20200101$$1EXP:(DE-H253)SINBAD-20200101$$5EXP:(DE-H253)ARES-20200101$$aSINBAD$$eAccelerator Research Experiment at SINBAD$$x0
000607160 7001_ $$0P:(DE-H253)PIP1080380$$aBurkart, Florian$$b1$$udesy
000607160 7001_ $$0P:(DE-H253)PIP1021528$$aDinter, Hannes$$b2$$udesy
000607160 7001_ $$0P:(DE-H253)PIP1086263$$aKellermeier, Max$$b3$$udesy
000607160 7001_ $$0P:(DE-H253)PIP1030512$$aKuropka, Willi$$b4$$udesy
000607160 7001_ $$0P:(DE-H253)PIP1014786$$aMayet, Frank$$b5$$udesy
000607160 7001_ $$0P:(DE-H253)PIP1019775$$aVinatier, Thomas$$b6$$udesy
000607160 7001_ $$0P:(DE-HGF)0$$aSantina, Elham$$b7
000607160 7001_ $$0P:(DE-HGF)0$$aChadwick, Amy L.$$b8
000607160 7001_ $$0P:(DE-HGF)0$$aMerchant, Michael J.$$b9
000607160 7001_ $$0P:(DE-HGF)0$$aHenthorn, Nicholas T.$$b10
000607160 7001_ $$0P:(DE-H253)PIP1101402$$aKöpke, Michael$$b11$$udesy
000607160 7001_ $$0P:(DE-H253)PIP1097590$$aStacey, Blae$$b12$$udesy
000607160 7001_ $$0P:(DE-H253)PIP1020401$$aJaster-Merz, Sonja Meike$$b13$$udesy
000607160 7001_ $$0P:(DE-HGF)0$$aJones, Roger M.$$b14
000607160 77318 $$2Crossref$$3journal-article$$a10.1038/s41598-024-60585-7$$bSpringer Science and Business Media LLC$$d2024-05-13$$n1$$p10957$$tScientific Reports$$v14$$x2045-2322$$y2024
000607160 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-024-60585-7$$gVol. 14, no. 1, p. 10957$$n1$$p10957$$tScientific reports$$v14$$x2045-2322$$y2024
000607160 8564_ $$uhttps://www.nature.com/articles/s41598-024-60585-7
000607160 8564_ $$uhttps://bib-pubdb1.desy.de/record/607160/files/s41598-024-60585-7-1.pdf$$yOpenAccess
000607160 8564_ $$uhttps://bib-pubdb1.desy.de/record/607160/files/s41598-024-60585-7-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000607160 909CO $$ooai:bib-pubdb1.desy.de:607160$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000607160 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104462$$aExternal Institute$$b0$$kExtern
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080380$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021528$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086263$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1030512$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000607160 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030512$$aExternal Institute$$b4$$kExtern
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1014786$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000607160 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014786$$aExternal Institute$$b5$$kExtern
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019775$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1101402$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097590$$aDeutsches Elektronen-Synchrotron$$b12$$kDESY
000607160 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020401$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000607160 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000607160 9141_ $$y2024
000607160 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000607160 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000607160 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
000607160 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000607160 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
000607160 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000607160 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
000607160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-29T15:28:26Z
000607160 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-29T15:28:26Z
000607160 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-29T15:28:26Z
000607160 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000607160 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000607160 9201_ $$0I:(DE-H253)MPY1-20170908$$kMPY1$$lBeschleunigerphysik Fachgruppe MPY1$$x0
000607160 9201_ $$0I:(DE-H253)FS-TI-20120731$$kFS-TI$$lFS-Arbeitsgruppe$$x1
000607160 980__ $$ajournal
000607160 980__ $$aVDB
000607160 980__ $$aUNRESTRICTED
000607160 980__ $$aI:(DE-H253)MPY1-20170908
000607160 980__ $$aI:(DE-H253)FS-TI-20120731
000607160 9801_ $$aFullTexts
000607160 999C5 $$1C DesRosiers$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/45/7/306$$p1781 -$$tPhys. Med. Biol.$$uDesRosiers, C., Moskvin, V., Bielajew, A. F. & Papiez, L. 150–250 meV electron beams in radiation therapy. Phys. Med. Biol. 45(7), 1781–1805 (2000).$$v45$$y2000
000607160 999C5 $$2Crossref$$uCHUV, CERN and THERYQ collaborate on FLASH radiotherapy device. Appl. Rad. Oncol. (2022).
000607160 999C5 $$2Crossref$$uWuensch, W. The CHUV-CERN collaboration on a high-energy electron FLASH therapy facility. In UK Accelerator Institutes Seminar Series (2021). https://www.appliedradiationoncology.com/articles/chuv-cern-and-theryq-collaborate-on-flash-radiotherapy-device. Accessed June 2023.
000607160 999C5 $$2Crossref$$uLagzda, A. VHEE radiotherapy studies at CLARA and CERN facilities. https://www.research.manchester.ac.uk/portal/files/156333514/FULL_TEXT.PDF. University of Manchester (2019). Accessed June 2023.
000607160 999C5 $$1A Lagzda$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nimb.2020.09.008$$p70 -$$tNucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms$$uLagzda, A. et al. Influence of heterogeneous media on very high energy electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 482, 70–81 (2020).$$v482$$y2020
000607160 999C5 $$1M Bazalova-Carter$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.4918923$$p2615 -$$tMed. Phys.$$uBazalova-Carter, M. et al. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans. Med. Phys. 42(5), 2615–2625 (2015).$$v42$$y2015
000607160 999C5 $$1RJ Kudchadker$$2Crossref$$9-- missing cx lookup --$$a10.1120/jacmp.v4i4.2503$$p321 -$$tJ. Appl. Clin. Med. Phys.$$uKudchadker, R. J., Antolak, J. A., Morrison, W. H., Wong, P. F. & Hogstrom, K. R. Utilization of custom electron bolus in head and neck radiotherapy. J. Appl. Clin. Med. Phys. 4(4), 321–333 (2003).$$v4$$y2003
000607160 999C5 $$1LL Haas$$2Crossref$$9-- missing cx lookup --$$a10.1148/62.6.845$$p845 -$$tRadiology$$uHaas, L. L., Laughlin, J. B. & Harvey, R. A. Biological effectiveness of highspeed electron beam in man. Radiology 62(6), 845–851 (1954).$$v62$$y1954
000607160 999C5 $$1GE Laramore$$2Crossref$$tEncyclopedia of Radiation Oncology$$uLaramore, G. E., Rockhill, J. K. & Komarnicky Kocher, L. T. Relative biological effectiveness (RBE). In Encyclopedia of Radiation Oncology (ed. Brady, L. W.) (Springer, 2013).$$y2013
000607160 999C5 $$1KL Small$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-82772-6$$tSci. Rep.$$uSmall, K. L. et al. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci. Rep. https://doi.org/10.1038/s41598-021-82772-6 (2021).$$y2021
000607160 999C5 $$1HC Wanstall$$2Crossref$$9-- missing cx lookup --$$a10.1093/jrr/rrad032$$p547 -$$tJ. Radiat. Res.$$uWanstall, H. C. et al. Quantification of damage to plasmid DNA from 35 MeV electrons, 228 MeV protons and 300 kVp X-rays in varying hydroxyl radical scavenging environments. J. Radiat. Res. 64(3), 547–557 (2023).$$v64$$y2023
000607160 999C5 $$1R Delorme$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-90805-3$$p11242 -$$tSci. Rep.$$uDelorme, R., Masilela, T. A. M., Etoh, C., Smekens, F. & Prezado, Y. First theoretical determination of relative biological effectiveness of very high energy electrons. Sci. Rep. 11(1), 11242 (2021).$$v11$$y2021
000607160 999C5 $$1MG Ronga$$2Crossref$$9-- missing cx lookup --$$a10.3390/cancers13194942$$p4942 -$$tCancers$$uRonga, M. G. et al. Back to the future: Very high-energy electrons (vhees) and their potential application in radiation therapy. Cancers 13(19), 4942 (2021).$$v13$$y2021
000607160 999C5 $$2Crossref$$uBurkart, F. et al. The ARES Linac at DESY. In 31st Int Linear Accel Conf. (JACoW Publishing, 2022).
000607160 999C5 $$2Crossref$$uAshland. EBT3 Specification and User Guide (2023). http://www.gafchromic.com/documents/EBT3_Specifications.pdf. Accessed June 2023.
000607160 999C5 $$1A Subiel$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/59/19/5811$$p5811 -$$tPhys. Med. Biol.$$uSubiel, A. et al. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: Using radiochromic film measurements and Monte Carlo simulations. Phys. Med. Biol. 59(19), 5811–5829 (2014).$$v59$$y2014
000607160 999C5 $$2Crossref$$uRieker, V. F. et al. Developments of reliable VHEE/FLASH passive dosimetry methods and procedures at CLEAR. In 14th Int Particle Accel Conf; Venezia (JACoW Publishing, 2023).
000607160 999C5 $$1M McManus$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-020-65819-y$$p9089 -$$tSci. Rep.$$uMcManus, M. et al. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate very high energy electron beams. Sci. Rep. 10(1), 9089 (2020).$$v10$$y2020
000607160 999C5 $$1RG Verona$$2Crossref$$9-- missing cx lookup --$$a10.1002/mp.15782$$p5513 -$$tMed. Phys.$$uVerona, R. G. et al. Application of a novel diamond detector for commissioning of FLASH radiotherapy electron beams. Med. Phys. 49(8), 5513–5522 (2022).$$v49$$y2022
000607160 999C5 $$1C Herskind$$2Crossref$$9-- missing cx lookup --$$a10.1186/s13014-016-0750-3$$p24 -$$tRadiat. Oncol.$$uHerskind, C. et al. Biology of high single doses of IORT: RBE, 5 R’s, and other biological aspects. Radiat. Oncol. 12(1), 24 (2017).$$v12$$y2017
000607160 999C5 $$1A Chattaraj$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12194-021-00627-1$$p297 -$$tRadiol. Phys. Technol.$$uChattaraj, A. & Selvam, T. P. Microdosimetry-based relative biological effectiveness calculations for radiotherapeutic electron beams: A FLUKA-based study. Radiol. Phys. Technol. 14(3), 297–308 (2021).$$v14$$y2021
000607160 999C5 $$1S Acharya$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00411-008-0209-5$$p197 -$$tRadiat. Environ. Biophys.$$uAcharya, S., Sanjeev, G., Bhat, N. N., Siddappa, K. & Narayana, Y. The effect of electron and gamma irradiation on the induction of micronuclei in cytokinesis-blocked human blood lymphocytes. Radiat. Environ. Biophys. 48(2), 197–203 (2009).$$v48$$y2009
000607160 999C5 $$1MG Andreassi$$2Crossref$$9-- missing cx lookup --$$a10.1667/RR14266.1$$p245 -$$tRadiat. Res.$$uAndreassi, M. G. et al. Radiobiological effectiveness of ultrashort laser-driven electron bunches: Micronucleus frequency, telomere shortening and cell viability. Radiat. Res. 186(3), 245–253 (2016).$$v186$$y2016
000607160 999C5 $$1RK Nairy$$2Crossref$$uNairy, R. K., Bhat, N. N., Sanjeev, G. & Yerol, N. Dose-response study using micronucleus cytome assay: A tool for biodosimetry application. Radiat. Prot. Dosim. 174(1), 79–87 (2017).$$y2017
000607160 999C5 $$1CJ Heaven$$2Crossref$$9-- missing cx lookup --$$a10.1093/mutage/geac001$$p3 -$$tMutagenesis$$uHeaven, C. J. et al. The suitability of micronuclei as markers of relative biological effect. Mutagenesis 37(1), 3–12 (2022).$$v37$$y2022
000607160 999C5 $$2Crossref$$uNational Institute of Standards and Technology. ESTAR: Stopping Power and Range Tables for Electrons. https://physics.nist.gov/cgi-bin/Star/e_table.pl (2024). Accessed June 2023.
000607160 999C5 $$1ON Vassiliev$$2Crossref$$9-- missing cx lookup --$$a10.1088/2057-1976/abc967$$p015001 -$$tBiomed. Phys. Eng. Express$$uVassiliev, O. N. On calculation of the average linear energy transfer for radiobiological modelling. Biomed. Phys. Eng. Express 7(1), 015001 (2021).$$v7$$y2021
000607160 999C5 $$1International Atomic Energy Agency$$2Crossref$$tRadiation Biology: A Handbook for Teachers and Students$$uInternational Atomic Energy Agency. Radiation Biology: A Handbook for Teachers and Students 20–21 (Springer, 2010).$$y2010
000607160 999C5 $$1B Faddegon$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ejmp.2020.03.019$$p114 -$$tPhys. Med.$$uFaddegon, B. et al. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med. 72, 114–121 (2020).$$v72$$y2020
000607160 999C5 $$1J Perl$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.4758060$$p6818 -$$tMed. Phys.$$uPerl, J., Shin, J., Schumann, J., Faddegon, B. & Paganetti, H. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications. Med. Phys. 39(11), 6818–6837 (2012).$$v39$$y2012