| Home > Publications database > Computational study of diffraction image formation from XFEL irradiated single ribosome molecule > print |
| 001 | 606808 | ||
| 005 | 20251017180823.0 | ||
| 024 | 7 | _ | |a 10.1038/s41598-024-61314-w |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2024-01638 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:163438723 |2 altmetric |
| 024 | 7 | _ | |a pmid:38720133 |2 pmid |
| 024 | 7 | _ | |a WOS:001216325300001 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W4396775398 |
| 037 | _ | _ | |a PUBDB-2024-01638 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Stransky, Michal |0 P:(DE-H253)PIP1092209 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Computational study of diffraction image formation from XFEL irradiated single ribosome molecule |
| 260 | _ | _ | |a [London] |c 2024 |b Macmillan Publishers Limited, part of Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1724405762_903794 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Single particle imaging at atomic resolution is perhaps one of the most desired goals for ultrafast X-ray science with X-rayFree-Electron Lasers. Such a capability would create great opportunity within the biological sciences, as high-resolutionstructural information of biosamples that may not crystallize is essential for many research areas therein. In this paper, we reporton a comprehensive computational study of diffraction image formation during single particle imaging of a macromolecule,containing over one hundred thousand non-hydrogen atoms. For this study, we use a dedicated simulation framework, SIMEX,available at the European XFEL facility. Our results demonstrate the full feasibility of computational single-particle imagingstudies for biological samples of realistic size. This finding is important as it shows that the SIMEX platform can be usedfor simulations to inform relevant single-particle-imaging experiments and help to establish optimal parameters for theseexperiments. This will enable more focused and more efficient single-particle-imaging experiments at XFEL facilities, makingthe best use of the resource-intensive XFEL operation. |
| 536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
| 542 | _ | _ | |i 2024-05-09 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
| 542 | _ | _ | |i 2024-05-09 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
| 693 | _ | _ | |a XFEL |e SPB: Single Particles, clusters & Biomolecules |f SASE1 |1 EXP:(DE-H253)XFEL-20150101 |0 EXP:(DE-H253)XFEL-SPB-20150101 |5 EXP:(DE-H253)XFEL-SPB-20150101 |6 EXP:(DE-H253)XFEL-SASE1-20150101 |x 0 |
| 700 | 1 | _ | |a E, Juncheng |0 P:(DE-H253)PIP1084165 |b 1 |
| 700 | 1 | _ | |a Jurek, Zoltan |0 P:(DE-H253)PIP1013492 |b 2 |
| 700 | 1 | _ | |a Santra, Robin |0 P:(DE-H253)PIP1012203 |b 3 |
| 700 | 1 | _ | |a Bean, Richard |0 P:(DE-H253)PIP1016993 |b 4 |
| 700 | 1 | _ | |a Ziaja, Beata |0 P:(DE-H253)PIP1003464 |b 5 |
| 700 | 1 | _ | |a Mancuso, Adrian |0 P:(DE-H253)PIP1006340 |b 6 |e Corresponding author |
| 773 | 1 | 8 | |a 10.1038/s41598-024-61314-w |b Springer Science and Business Media LLC |d 2024-05-09 |n 1 |p 10617 |3 journal-article |2 Crossref |t Scientific Reports |v 14 |y 2024 |x 2045-2322 |
| 773 | _ | _ | |a 10.1038/s41598-024-61314-w |0 PERI:(DE-600)2615211-3 |n 1 |p 10617 |t Scientific reports |v 14 |y 2024 |x 2045-2322 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606808/files/HTML-Approval_of_scientific_publication.html |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606808/files/PDF-Approval_of_scientific_publication.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606808/files/Supplementary%20Material.pdf |y Restricted |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606808/files/Supplementary%20Material.pdf?subformat=pdfa |x pdfa |y Restricted |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606808/files/manuscript.pdf |y OpenAccess |z StatID:(DE-HGF)0510 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606808/files/s41598-024-61314-w.pdf |y Restricted |z StatID:(DE-HGF)0599 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606808/files/manuscript.pdf?subformat=pdfa |x pdfa |y OpenAccess |z StatID:(DE-HGF)0510 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606808/files/s41598-024-61314-w.pdf?subformat=pdfa |x pdfa |y Restricted |z StatID:(DE-HGF)0599 |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:606808 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1092209 |
| 910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 0 |6 P:(DE-H253)PIP1092209 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1092209 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1092209 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1084165 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1013492 |
| 910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 2 |6 P:(DE-H253)PIP1013492 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1012203 |
| 910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 3 |6 P:(DE-H253)PIP1012203 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 3 |6 P:(DE-H253)PIP1012203 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1016993 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1003464 |
| 910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 5 |6 P:(DE-H253)PIP1003464 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1003464 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1006340 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 6 |6 P:(DE-H253)PIP1006340 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-24 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-24 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-24 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a DEAL: Springer Nature 01.01.2024 |2 APC |0 PC:(DE-HGF)0178 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-XM-20210408 |k FS-CFEL-XM |l Gruppe CFEL-XM |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-3-20120731 |k FS-CFEL-3 |l CFEL-Theory |x 1 |
| 920 | 1 | _ | |0 I:(DE-H253)XFEL_E1_SPB_SFX-20210408 |k XFEL_E1_SPB/SFX |l SPB/SFX |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)FS-CFEL-XM-20210408 |
| 980 | _ | _ | |a I:(DE-H253)FS-CFEL-3-20120731 |
| 980 | _ | _ | |a I:(DE-H253)XFEL_E1_SPB_SFX-20210408 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a APC |
| 999 | C | 5 | |a 10.1021/nl072728k |9 -- missing cx lookup -- |1 MJ Bogan |p 310 - |2 Crossref |u Bogan, M. J. et al. Single particle X-ray diffractive imaging. Nano Lett. 8, 310–316. https://doi.org/10.1021/nl072728k (2008). |t Nano Lett. |v 8 |y 2008 |
| 999 | C | 5 | |a 10.1038/nature09748 |9 -- missing cx lookup -- |1 MM Seibert |p 78 - |2 Crossref |u Seibert, M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–81. https://doi.org/10.1038/nature09748 (2011). |t Nature |v 470 |y 2011 |
| 999 | C | 5 | |a 10.1038/s42005-020-0362-y |1 E Sobolev |9 -- missing cx lookup -- |2 Crossref |u Sobolev, E. et al. Megahertz single-particle imaging at the European XFEL. Commun. Phys.https://doi.org/10.1038/s42005-020-0362-y (2020). |t Commun. Phys. |y 2020 |
| 999 | C | 5 | |a 10.1063/4.0000024 |1 J Bielecki |9 -- missing cx lookup -- |2 Crossref |u Bielecki, J., Maia, F. R. N. C. & Mancuso, A. P. Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources. Struct. Dynam. 7, 040901. https://doi.org/10.1063/4.0000024 (2020). |t Struct. Dynam. |v 7 |y 2020 |
| 999 | C | 5 | |a 10.1126/science.aat4346 |9 -- missing cx lookup -- |1 Y Cheng |p 876 - |2 Crossref |u Cheng, Y. Single-particle cryo-em-how did it get here and where will it go. Science 361, 876–880. https://doi.org/10.1126/science.aat4346 (2018). |t Science |v 361 |y 2018 |
| 999 | C | 5 | |a 10.1038/nmeth.3694 |9 -- missing cx lookup -- |1 E Nogales |p 24 - |2 Crossref |u Nogales, E. The development of cryo-em into a mainstream structural biology technique. Nat. Methods 13, 24–27. https://doi.org/10.1038/nmeth.3694 (2016). |t Nat. Methods |v 13 |y 2016 |
| 999 | C | 5 | |a 10.3390/app8010132 |1 Z Sun |9 -- missing cx lookup -- |2 Crossref |u Sun, Z., Fan, J., Li, H. & Jiang, H. Current status of single particle imaging with x-ray lasers. Appl. Sci.https://doi.org/10.3390/app8010132 (2018). |t Appl. Sci. |y 2018 |
| 999 | C | 5 | |a 10.1038/nphoton.2011.297 |9 -- missing cx lookup -- |1 A Barty |p 35 - |2 Crossref |u Barty, A. et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photonics 6, 35–40. https://doi.org/10.1038/nphoton.2011.297 (2012). |t Nat. Photonics |v 6 |y 2012 |
| 999 | C | 5 | |a 10.1038/ncomms5061 |9 -- missing cx lookup -- |1 R Xu |p 4061 - |2 Crossref |u Xu, R. et al. Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nat. Commun. 5, 4061. https://doi.org/10.1038/ncomms5061 (2014). |t Nat. Commun. |v 5 |y 2014 |
| 999 | C | 5 | |a 10.1107/S1600577519003308 |9 -- missing cx lookup -- |1 AP Mancuso |p 660 - |2 Crossref |u Mancuso, A. P. et al. The single particles, clusters and biomolecules and serial femtosecond crystallography instrument of the European XFEL: Initial installation. J. Synchrotron Radiat. 26, 660–676. https://doi.org/10.1107/S1600577519003308 (2019). |t J. Synchrotron Radiat. |v 26 |y 2019 |
| 999 | C | 5 | |a 10.1038/s41467-020-15610-4 |9 -- missing cx lookup -- |1 K Nass |p 1814 - |2 Crossref |u Nass, K. et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 11, 1814. https://doi.org/10.1038/s41467-020-15610-4 (2020). |t Nat. Commun. |v 11 |y 2020 |
| 999 | C | 5 | |a 10.1038/nature09750 |9 -- missing cx lookup -- |1 HN Chapman |p 73 - |2 Crossref |u Chapman, H. N. et al. Femtosecond x-ray protein nanocrystallography. Nature 470, 73–77. https://doi.org/10.1038/nature09750 (2011). |t Nature |v 470 |y 2011 |
| 999 | C | 5 | |a 10.3390/photonics2010256 |9 -- missing cx lookup -- |1 B Ziaja |p 256 - |2 Crossref |u Ziaja, B. et al. Towards realistic simulations of macromolecules irradiated under the conditions of coherent diffraction imaging with an x-ray free-electron laser. Photonics 2, 256–269. https://doi.org/10.3390/photonics2010256 (2015). |t Photonics |v 2 |y 2015 |
| 999 | C | 5 | |a 10.1038/srep24791 |1 CH Yoon |9 -- missing cx lookup -- |2 Crossref |u Yoon, C. H. et al. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray free-electron laser. Sci. Rep.https://doi.org/10.1038/srep24791 (2016). |t Sci. Rep. |y 2016 |
| 999 | C | 5 | |a 10.1107/S2052252517009496 |9 -- missing cx lookup -- |1 C Fortmann-Grote |p 560 - |2 Crossref |u Fortmann-Grote, C. et al. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray free-electron laser. IUCrJ 4, 560–568. https://doi.org/10.1107/S2052252517009496 (2017). |t IUCrJ |v 4 |y 2017 |
| 999 | C | 5 | |2 Crossref |u Fortmann-Grote, C. & E, J. C. Simex. howpublishedhttps://github.com/PaNOSC-ViNYL/SimEx (2020). |
| 999 | C | 5 | |a 10.1117/12.2677299 |1 E Juncheng |9 -- missing cx lookup -- |2 Crossref |u Juncheng, E. et al. Simex-lite: Easy access to start-to-end simulation for experiments at advanced light sources. Proc. SPIEhttps://doi.org/10.1117/12.2677299 (2023). |t Proc. SPIE |y 2023 |
| 999 | C | 5 | |a 10.1038/s41598-021-97142-5 |9 -- missing cx lookup -- |1 E Juncheng |p 17976 - |2 Crossref |u Juncheng, E. et al. Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray free-electron laser. Sci. Rep. 11, 17976. https://doi.org/10.1038/s41598-021-97142-5 (2021). |t Sci. Rep. |v 11 |y 2021 |
| 999 | C | 5 | |a 10.1038/s41598-023-43298-1 |9 -- missing cx lookup -- |1 E Juncheng |p 16359 - |2 Crossref |u Juncheng, E. et al. Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser. Sci. Rep. 13, 16359. https://doi.org/10.1038/s41598-023-43298-1 (2023). |t Sci. Rep. |v 13 |y 2023 |
| 999 | C | 5 | |a 10.1103/PhysRevLett.102.205002 |1 B Ziaja |9 -- missing cx lookup -- |2 Crossref |u Ziaja, B., Wabnitz, H., Wang, F. & Weckert, E. Energetics, ionization, and expansion dynamics of atomic clusters irradiated with short intense vacuum-ultraviolet pulses. Phys. Rev. Lett. 102, 205002 (2009). |t Phys. Rev. Lett. |v 102 |y 2009 |
| 999 | C | 5 | |a 10.1107/S1600576716006014 |9 -- missing cx lookup -- |1 Z Jurek |p 1048 - |2 Crossref |u Jurek, Z., Son, S.-K., Ziaja, B. & Santra, R. XMDYN and XATOM: Versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Crystallogr. 49, 1048–1056 (2016). |t J. Appl. Crystallogr. |v 49 |y 2016 |
| 999 | C | 5 | |a 10.1038/ncomms5281 |9 -- missing cx lookup -- |1 BF Murphy |p 4281 - |2 Crossref |u Murphy, B. F. et al. Femtosecond X-ray-induced explosion of C 60 at extreme intensity. Nat. Commun. 5, 4281. https://doi.org/10.1038/ncomms5281 (2014). |t Nat. Commun. |v 5 |y 2014 |
| 999 | C | 5 | |a 10.3390/molecules27134206 |9 -- missing cx lookup -- |1 M Stransky |p 4206 - |2 Crossref |u Stransky, M., Jurek, Z., Santra, R., Mancuso, A. & Ziaja, B. Tree-code based improvement of computational performance of the X-ray-matter-interaction simulation tool XMDYN. Molecules 27, 4206. https://doi.org/10.3390/molecules27134206 (2022). |t Molecules |v 27 |y 2022 |
| 999 | C | 5 | |a 10.1126/science.1175275 |9 -- missing cx lookup -- |1 W Zhang |p 1014 - |2 Crossref |u Zhang, W., Dunkle, J. A. & Cate, J. H. D. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017. https://doi.org/10.1126/science.1175275 (2009). |t Science |v 325 |y 2009 |
| 999 | C | 5 | |2 Crossref |u Gibbon, P. PEPC: Pretty Efficient Parallel Coulomb-solver. Technical Report, FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik FZJ-ZAM-IB-2003-05 (2003). |
| 999 | C | 5 | |a 10.1103/PhysRevLett.131.163201 |1 I Inoue |9 -- missing cx lookup -- |2 Crossref |u Inoue, I. et al. Femtosecond reduction of atomic scattering factors triggered by intense x-ray pulse. Phys. Rev. Lett. 131, 163201 (2023). |t Phys. Rev. Lett. |v 131 |y 2023 |
| 999 | C | 5 | |a 10.1107/S2052252518011442 |9 -- missing cx lookup -- |1 MM Abdullah |p 699 - |2 Crossref |u Abdullah, M. M., Son, S.-K., Jurek, Z. & Santra, R. Towards the theoretical limitations of X-ray nanocrystallography at high intensity: the validity of the effective-form-factor description. IUCrJ 5, 699–705. https://doi.org/10.1107/S2052252518011442 (2018). |t IUCrJ |v 5 |y 2018 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|