001     606717
005     20250723171724.0
024 7 _ |a 10.1021/jacs.4c02163
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a altmetric:162639893
|2 altmetric
024 7 _ |a pmid:38635878
|2 pmid
024 7 _ |a WOS:001242302500001
|2 WOS
024 7 _ |a openalex:W4394933932
|2 openalex
037 _ _ |a PUBDB-2024-01634
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Scholz, Alexander S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Tetramerization of BEB-Doped Phenalenyls to Obtain (BE)$_8$-[16]Annulenes (E = N, O)
260 _ _ |a Washington, DC
|c 2024
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716370822_1902
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a Two (BE)8-[16] annulenes were prepared and fully characterized by experimental and quantum-chemical means (1,E =N;2, E=O). The 1,8-naphthalenediyl-bridged diborane(6)3 served as their common starting material, which was treated with [Al(NH$_3$)$_6$]Cl$_3$ to form 1 (91%yield) or with 1,8-naphthalenediboronic acid anhydride to form 2 (93%yield). As a result, the heteroannulenes 1 and 2 are supported by four aromatic “clamps” and may also be viewed as NH-or O-bridged cyclic tetramers of BNB-or BOB-doped phenalenyls. X-ray crystallography on mono-, di-, and tetra adducts 2*thf, 2*py$_2$, and 2*py$_4$ showed that 2 is an oligotopic Lewis acid (thf/py: tetrahydrofuran/pyridine donor). The applicability of 2 also as a Lewis basic ligand in coordination chemistry was demonstrated by the synthesis of the mononuclear Ag$^+$ complex [Ag(py)$_2$(2*py$_4$)]$^+$ and the dinuclear Pb$^{2+}$ complex 6. During the assembly of 6, the rearrangement of 2 led to the formation of two (BO)$_9$-macrocycles linked by two BOB-phenalenyls to form a nanom$eter-sized cage with four negatively charged, tetracoordinated B atoms. Both 1 and 2 show several redox waves in the cathodic regions of the cyclicvoltammograms. An in depth assessment of the consequences of electron injection on the aromaticity of 1 and 2was achieved by electronic structure calculations. 1 and 2 are proposed to exhibit aromatic switching capabilities in the [16]annulene motif.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20220822 (I-20220822)
|0 G:(DE-H253)I-20220822
|c I-20220822
|x 1
542 _ _ |i 2024-04-18
|2 Crossref
|u https://doi.org/10.15223/policy-029
542 _ _ |i 2024-04-18
|2 Crossref
|u https://doi.org/10.15223/policy-037
542 _ _ |i 2024-04-18
|2 Crossref
|u https://doi.org/10.15223/policy-045
588 _ _ |a Dataset connected to DataCite
693 _ _ |a PETRA III
|f PETRA Beamline P24
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P24-20150101
|6 EXP:(DE-H253)P-P24-20150101
|x 0
700 1 _ |a Bolte, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Virovets, Alexandr
|0 P:(DE-H253)PIP1026845
|b 2
700 1 _ |a Peresypkina, Eugenia
|0 P:(DE-H253)PIP1027099
|b 3
700 1 _ |a Lerner, Hans-Wolfram
|0 0000-0003-1803-7947
|b 4
700 1 _ |a Anstöter, Cate S.
|0 0000-0002-3412-2511
|b 5
|e Corresponding author
700 1 _ |a Wagner, Matthias
|0 P:(DE-H253)PIP1102807
|b 6
|e Corresponding author
773 1 8 |a 10.1021/jacs.4c02163
|b American Chemical Society (ACS)
|d 2024-04-18
|n 17
|p 12100-12112
|3 journal-article
|2 Crossref
|t Journal of the American Chemical Society
|v 146
|y 2024
|x 0002-7863
773 _ _ |a 10.1021/jacs.4c02163
|g Vol. 146, no. 17, p. 12100 - 12112
|0 PERI:(DE-600)1472210-0
|n 17
|p 12100-12112
|t Journal of the American Chemical Society
|v 146
|y 2024
|x 0002-7863
856 4 _ |u https://bib-pubdb1.desy.de/record/606717/files/scholz-et-al-2024-tetramerization-of-beb-doped-phenalenyls-to-obtain-%28be%298-16-annulenes-%28e-n-o%29.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/606717/files/scholz-et-al-2024-tetramerization-of-beb-doped-phenalenyls-to-obtain-%28be%298-16-annulenes-%28e-n-o%29.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:606717
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1026845
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1027099
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1102807
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1080/15583724.2016.1170701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c39770000578
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.73.681
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b109576p
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/9781119235941
|9 -- missing cx lookup --
|2 Crossref
|u Baumgartner, T.; Jäkle, F., Eds. Main Group Strategies towards Functional Hybrid Materials; John Wiley & Sons, Ltd.: Chichester, U.K., 2017, pp. 1–110.
999 C 5 |a 10.1002/anie.200703535
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.chemrev.6b00076
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/ejic.201700562
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jacs.7b09446
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.chemrev.1c00449
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D2TC01106A
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/jr9580003073
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.200700591
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.200805554
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C5DT03991F
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja500117z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.organomet.7b00296
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.201905823
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D1SC00543J
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D1TC02991F
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/ange.202201464
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.201607131
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.201705913
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/ceur.202300085
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.200801197
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja104607y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja404247r
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c3cc44373f
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acscatal.0c02211
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.202302110
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.201403213
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/poc.3390
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cber.19861190314
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cber.19841170324
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1055/a-1684-0031
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/jr9650006421
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/j29660001172
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cber.19911241011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/10406638.2012.740547
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.201402851
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/poc.4455
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/zaac.19482560401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ic050017o
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp057458d
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-2860(75)80076-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0022-328X(01)01060-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/B917043J
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cber.19861190612
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b006685k
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.201002300
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S2052520616003954
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.solidstatesciences.2010.07.021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S1387-7003(00)00086-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c3ce40327k
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C6DT02875F
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.201905818
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja00765a042
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jo00073a052
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja983762r
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.197503591
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jacs.0c03118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D0CC07671F
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.202400320
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D4QO00468J
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jacs.7b07375
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.orglett.7b01873
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.202100295
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.202202455
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.202300210
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.orglett.3c00429
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jacs.0c07781
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ol901326p
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0040-4039(00)90291-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.196708701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0955-2219(95)00168-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Pyridine might serve as a ligand for the aluminum reagent and favorably influence its reactivity (e.g. by promoting the release of NH3). Moreover, it could improve the solubility of the aluminum-containing by-products in THF and thus facilitate their separation from the sparingly soluble 1.
999 C 5 |2 Crossref
|u The assignment of the NH proton resonances is based on an H,HNOESY experiment, which showed a cross peak between the signal at 6.06 ppm and a signal at 8.32 ppm for the naphthalenediyl-H2,7 atoms (Figure S4); a cross peak associated with the signal at 6.45 ppm was not detectable.
999 C 5 |a 10.1016/S0022-328X(00)98523-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/zaac.200400021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.201008160
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/j29700000643
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0040-4039(00)75448-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cber.19941271011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Compare B–N = 1.456(4) Å in planar, delocalized 10a-aza-10b-borapyrene: ref 7b.
999 C 5 |a 10.1002/cber.19851180431
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/sym2041846
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Wiberg, N.; Wiberg, E.; Holleman, A. F. Lehrbuch der Anorganischen Chemie; 101th ed. Walter de Gruyter: Berlin, NY, 1995, p. 831 and 1043.
999 C 5 |1 Nöth H.
|y 1978
|2 Crossref
|t NMR─Basic Principles and Progress
|o Nöth H. NMR─Basic Principles and Progress 1978
999 C 5 |a 10.1002/ejic.201101098
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D1SC06404E
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ccr.2008.09.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Our current working hypothesis is that 3 equiv of the starting compound 2 are consumed in the formation of one dinuclear complex 6. Although we could not prove it experimentally, it is plausible to assume that the unused fragments of the third equiv of 2 have taken up the acetate ions of Pb(OAc)2, resulting in 2 equiv of the doubly O-acetylated compound 4.
999 C 5 |a 10.1039/D2SC04998H
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1351/pac199668020209
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp011955m
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b104847n
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.200400678
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D0CP02284E
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja0458165
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c1cp21950b
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u The C12B8N4-ring consists of 4 × (C1/C8a/C8) + (all B atoms) + (the 4 N atoms holding the BNB-phenalenyl subunits together).


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21